1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2006 Chris Cannam and QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "FeatureExtractionModelTransformer.h"
#include "plugin/FeatureExtractionPluginFactory.h"
#include "plugin/PluginXml.h"
#include <vamp-hostsdk/Plugin.h>
#include "data/model/Model.h"
#include "base/Window.h"
#include "base/Exceptions.h"
#include "data/model/SparseOneDimensionalModel.h"
#include "data/model/SparseTimeValueModel.h"
#include "data/model/EditableDenseThreeDimensionalModel.h"
#include "data/model/DenseTimeValueModel.h"
#include "data/model/NoteModel.h"
#include "data/model/FlexiNoteModel.h"
#include "data/model/RegionModel.h"
#include "data/model/FFTModel.h"
#include "data/model/WaveFileModel.h"
#include "rdf/PluginRDFDescription.h"
#include "TransformFactory.h"
#include <iostream>
#include <QSettings>
FeatureExtractionModelTransformer::FeatureExtractionModelTransformer(Input in,
const Transform &transform) :
ModelTransformer(in, transform),
m_plugin(0)
{
// SVDEBUG << "FeatureExtractionModelTransformer::FeatureExtractionModelTransformer: plugin " << pluginId << ", outputName " << m_transform.getOutput() << endl;
initialise();
}
FeatureExtractionModelTransformer::FeatureExtractionModelTransformer(Input in,
const Transforms &transforms) :
ModelTransformer(in, transforms),
m_plugin(0)
{
// SVDEBUG << "FeatureExtractionModelTransformer::FeatureExtractionModelTransformer: plugin " << pluginId << ", outputName " << m_transform.getOutput() << endl;
initialise();
}
static bool
areTransformsSimilar(const Transform &t1, const Transform &t2)
{
Transform t2o(t2);
t2o.setOutput(t1.getOutput());
return t1 == t2o;
}
bool
FeatureExtractionModelTransformer::initialise()
{
// All transforms must use the same plugin, parameters, and
// inputs: they can differ only in choice of plugin output. So we
// initialise based purely on the first transform in the list (but
// first check that they are actually similar as promised)
for (int j = 1; j < (int)m_transforms.size(); ++j) {
if (!areTransformsSimilar(m_transforms[0], m_transforms[j])) {
m_message = tr("Transforms supplied to a single FeatureExtractionModelTransformer instance must be similar in every respect except plugin output");
return false;
}
}
Transform primaryTransform = m_transforms[0];
QString pluginId = primaryTransform.getPluginIdentifier();
FeatureExtractionPluginFactory *factory =
FeatureExtractionPluginFactory::instanceFor(pluginId);
if (!factory) {
m_message = tr("No factory available for feature extraction plugin id \"%1\" (unknown plugin type, or internal error?)").arg(pluginId);
return false;
}
DenseTimeValueModel *input = getConformingInput();
if (!input) {
m_message = tr("Input model for feature extraction plugin \"%1\" is of wrong type (internal error?)").arg(pluginId);
return false;
}
m_plugin = factory->instantiatePlugin(pluginId, input->getSampleRate());
if (!m_plugin) {
m_message = tr("Failed to instantiate plugin \"%1\"").arg(pluginId);
return false;
}
TransformFactory::getInstance()->makeContextConsistentWithPlugin
(primaryTransform, m_plugin);
TransformFactory::getInstance()->setPluginParameters
(primaryTransform, m_plugin);
int channelCount = input->getChannelCount();
if ((int)m_plugin->getMaxChannelCount() < channelCount) {
channelCount = 1;
}
if ((int)m_plugin->getMinChannelCount() > channelCount) {
m_message = tr("Cannot provide enough channels to feature extraction plugin \"%1\" (plugin min is %2, max %3; input model has %4)")
.arg(pluginId)
.arg(m_plugin->getMinChannelCount())
.arg(m_plugin->getMaxChannelCount())
.arg(input->getChannelCount());
return false;
}
SVDEBUG << "Initialising feature extraction plugin with channels = "
<< channelCount << ", step = " << primaryTransform.getStepSize()
<< ", block = " << primaryTransform.getBlockSize() << endl;
if (!m_plugin->initialise(channelCount,
primaryTransform.getStepSize(),
primaryTransform.getBlockSize())) {
int pstep = primaryTransform.getStepSize();
int pblock = primaryTransform.getBlockSize();
///!!! hang on, this isn't right -- we're modifying a copy
primaryTransform.setStepSize(0);
primaryTransform.setBlockSize(0);
TransformFactory::getInstance()->makeContextConsistentWithPlugin
(primaryTransform, m_plugin);
if (primaryTransform.getStepSize() != pstep ||
primaryTransform.getBlockSize() != pblock) {
if (!m_plugin->initialise(channelCount,
primaryTransform.getStepSize(),
primaryTransform.getBlockSize())) {
m_message = tr("Failed to initialise feature extraction plugin \"%1\"").arg(pluginId);
return false;
} else {
m_message = tr("Feature extraction plugin \"%1\" rejected the given step and block sizes (%2 and %3); using plugin defaults (%4 and %5) instead")
.arg(pluginId)
.arg(pstep)
.arg(pblock)
.arg(primaryTransform.getStepSize())
.arg(primaryTransform.getBlockSize());
}
} else {
m_message = tr("Failed to initialise feature extraction plugin \"%1\"").arg(pluginId);
return false;
}
}
if (primaryTransform.getPluginVersion() != "") {
QString pv = QString("%1").arg(m_plugin->getPluginVersion());
if (pv != primaryTransform.getPluginVersion()) {
QString vm = tr("Transform was configured for version %1 of plugin \"%2\", but the plugin being used is version %3")
.arg(primaryTransform.getPluginVersion())
.arg(pluginId)
.arg(pv);
if (m_message != "") {
m_message = QString("%1; %2").arg(vm).arg(m_message);
} else {
m_message = vm;
}
}
}
Vamp::Plugin::OutputList outputs = m_plugin->getOutputDescriptors();
if (outputs.empty()) {
m_message = tr("Plugin \"%1\" has no outputs").arg(pluginId);
return false;
}
for (int j = 0; j < (int)m_transforms.size(); ++j) {
for (int i = 0; i < (int)outputs.size(); ++i) {
// SVDEBUG << "comparing output " << i << " name \"" << outputs[i].identifier << "\" with expected \"" << m_transform.getOutput() << "\"" << endl;
if (m_transforms[j].getOutput() == "" ||
outputs[i].identifier == m_transforms[j].getOutput().toStdString()) {
m_outputNos.push_back(i);
m_descriptors.push_back(new Vamp::Plugin::OutputDescriptor(outputs[i]));
m_fixedRateFeatureNos.push_back(-1); // we increment before use
break;
}
}
if ((int)m_descriptors.size() <= j) {
m_message = tr("Plugin \"%1\" has no output named \"%2\"")
.arg(pluginId)
.arg(m_transforms[j].getOutput());
return false;
}
}
for (int j = 0; j < (int)m_transforms.size(); ++j) {
createOutputModels(j);
}
return true;
}
void
FeatureExtractionModelTransformer::createOutputModels(int n)
{
DenseTimeValueModel *input = getConformingInput();
// cerr << "FeatureExtractionModelTransformer::createOutputModel: sample type " << m_descriptor->sampleType << ", rate " << m_descriptor->sampleRate << endl;
PluginRDFDescription description(m_transforms[n].getPluginIdentifier());
QString outputId = m_transforms[n].getOutput();
int binCount = 1;
float minValue = 0.0, maxValue = 0.0;
bool haveExtents = false;
bool haveBinCount = m_descriptors[n]->hasFixedBinCount;
if (haveBinCount) {
binCount = m_descriptors[n]->binCount;
}
m_needAdditionalModels[n] = false;
// cerr << "FeatureExtractionModelTransformer: output bin count "
// << binCount << endl;
if (binCount > 0 && m_descriptors[n]->hasKnownExtents) {
minValue = m_descriptors[n]->minValue;
maxValue = m_descriptors[n]->maxValue;
haveExtents = true;
}
int modelRate = input->getSampleRate();
int modelResolution = 1;
if (m_descriptors[n]->sampleType !=
Vamp::Plugin::OutputDescriptor::OneSamplePerStep) {
if (m_descriptors[n]->sampleRate > input->getSampleRate()) {
cerr << "WARNING: plugin reports output sample rate as "
<< m_descriptors[n]->sampleRate << " (can't display features with finer resolution than the input rate of " << input->getSampleRate() << ")" << endl;
}
}
switch (m_descriptors[n]->sampleType) {
case Vamp::Plugin::OutputDescriptor::VariableSampleRate:
if (m_descriptors[n]->sampleRate != 0.0) {
modelResolution = int(modelRate / m_descriptors[n]->sampleRate + 0.001);
}
break;
case Vamp::Plugin::OutputDescriptor::OneSamplePerStep:
modelResolution = m_transforms[n].getStepSize();
break;
case Vamp::Plugin::OutputDescriptor::FixedSampleRate:
//!!! SV doesn't actually support display of models that have
//!!! different underlying rates together -- so we always set
//!!! the model rate to be the input model's rate, and adjust
//!!! the resolution appropriately. We can't properly display
//!!! data with a higher resolution than the base model at all
if (m_descriptors[n]->sampleRate > input->getSampleRate()) {
modelResolution = 1;
} else {
modelResolution = int(round(input->getSampleRate() /
m_descriptors[n]->sampleRate));
}
break;
}
bool preDurationPlugin = (m_plugin->getVampApiVersion() < 2);
Model *out = 0;
if (binCount == 0 &&
(preDurationPlugin || !m_descriptors[n]->hasDuration)) {
// Anything with no value and no duration is an instant
out = new SparseOneDimensionalModel(modelRate, modelResolution, false);
QString outputEventTypeURI = description.getOutputEventTypeURI(outputId);
out->setRDFTypeURI(outputEventTypeURI);
} else if ((preDurationPlugin && binCount > 1 &&
(m_descriptors[n]->sampleType ==
Vamp::Plugin::OutputDescriptor::VariableSampleRate)) ||
(!preDurationPlugin && m_descriptors[n]->hasDuration)) {
// For plugins using the old v1 API without explicit duration,
// we treat anything that has multiple bins (i.e. that has the
// potential to have value and duration) and a variable sample
// rate as a note model, taking its values as pitch, duration
// and velocity (if present) respectively. This is the same
// behaviour as always applied by SV to these plugins in the
// past.
// For plugins with the newer API, we treat anything with
// duration as either a note model with pitch and velocity, or
// a region model.
// How do we know whether it's an interval or note model?
// What's the essential difference? Is a note model any
// interval model using a Hz or "MIDI pitch" scale? There
// isn't really a reliable test for "MIDI pitch"... Does a
// note model always have velocity? This is a good question
// to be addressed by accompanying RDF, but for the moment we
// will do the following...
bool isNoteModel = false;
// Regions have only value (and duration -- we can't extract a
// region model from an old-style plugin that doesn't support
// duration)
if (binCount > 1) isNoteModel = true;
// Regions do not have units of Hz or MIDI things (a sweeping
// assumption!)
if (m_descriptors[n]->unit == "Hz" ||
m_descriptors[n]->unit.find("MIDI") != std::string::npos ||
m_descriptors[n]->unit.find("midi") != std::string::npos) {
isNoteModel = true;
}
// If we had a "sparse 3D model", we would have the additional
// problem of determining whether to use that here (if bin
// count > 1). But we don't.
QSettings settings;
settings.beginGroup("Transformer");
bool flexi = settings.value("use-flexi-note-model", false).toBool();
settings.endGroup();
cerr << "flexi = " << flexi << endl;
if (isNoteModel && !flexi) {
NoteModel *model;
if (haveExtents) {
model = new NoteModel
(modelRate, modelResolution, minValue, maxValue, false);
} else {
model = new NoteModel
(modelRate, modelResolution, false);
}
model->setScaleUnits(m_descriptors[n]->unit.c_str());
out = model;
} else if (isNoteModel && flexi) {
FlexiNoteModel *model;
if (haveExtents) {
model = new FlexiNoteModel
(modelRate, modelResolution, minValue, maxValue, false);
} else {
model = new FlexiNoteModel
(modelRate, modelResolution, false);
}
model->setScaleUnits(m_descriptors[n]->unit.c_str());
out = model;
} else {
RegionModel *model;
if (haveExtents) {
model = new RegionModel
(modelRate, modelResolution, minValue, maxValue, false);
} else {
model = new RegionModel
(modelRate, modelResolution, false);
}
model->setScaleUnits(m_descriptors[n]->unit.c_str());
out = model;
}
QString outputEventTypeURI = description.getOutputEventTypeURI(outputId);
out->setRDFTypeURI(outputEventTypeURI);
} else if (binCount == 1 ||
(m_descriptors[n]->sampleType ==
Vamp::Plugin::OutputDescriptor::VariableSampleRate)) {
// Anything that is not a 1D, note, or interval model and that
// has only one value per result must be a sparse time value
// model.
// Anything that is not a 1D, note, or interval model and that
// has a variable sample rate is treated as a set of sparse
// time value models, one per output bin, because we lack a
// sparse 3D model.
// Anything that is not a 1D, note, or interval model and that
// has a fixed sample rate but an unknown number of values per
// result is also treated as a set of sparse time value models.
// For sets of sparse time value models, we create a single
// model first as the "standard" output and then create models
// for bins 1+ in the additional model map (mapping the output
// descriptor to a list of models indexed by bin-1). But we
// don't create the additional models yet, as this case has to
// work even if the number of bins is unknown at this point --
// we create an additional model (copying its parameters from
// the default one) each time a new bin is encountered.
if (!haveBinCount || binCount > 1) {
m_needAdditionalModels[n] = true;
}
SparseTimeValueModel *model;
if (haveExtents) {
model = new SparseTimeValueModel
(modelRate, modelResolution, minValue, maxValue, false);
} else {
model = new SparseTimeValueModel
(modelRate, modelResolution, false);
}
Vamp::Plugin::OutputList outputs = m_plugin->getOutputDescriptors();
model->setScaleUnits(outputs[m_outputNos[n]].unit.c_str());
out = model;
QString outputEventTypeURI = description.getOutputEventTypeURI(outputId);
out->setRDFTypeURI(outputEventTypeURI);
} else {
// Anything that is not a 1D, note, or interval model and that
// has a fixed sample rate and more than one value per result
// must be a dense 3D model.
EditableDenseThreeDimensionalModel *model =
new EditableDenseThreeDimensionalModel
(modelRate, modelResolution, binCount,
EditableDenseThreeDimensionalModel::BasicMultirateCompression,
false);
if (!m_descriptors[n]->binNames.empty()) {
std::vector<QString> names;
for (int i = 0; i < (int)m_descriptors[n]->binNames.size(); ++i) {
names.push_back(m_descriptors[n]->binNames[i].c_str());
}
model->setBinNames(names);
}
out = model;
QString outputSignalTypeURI = description.getOutputSignalTypeURI(outputId);
out->setRDFTypeURI(outputSignalTypeURI);
}
if (out) {
out->setSourceModel(input);
m_outputs.push_back(out);
}
}
FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer()
{
// SVDEBUG << "FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer()" << endl;
delete m_plugin;
for (int j = 0; j < (int)m_descriptors.size(); ++j) {
delete m_descriptors[j];
}
}
FeatureExtractionModelTransformer::Models
FeatureExtractionModelTransformer::getAdditionalOutputModels()
{
Models mm;
for (AdditionalModelMap::iterator i = m_additionalModels.begin();
i != m_additionalModels.end(); ++i) {
for (std::map<int, SparseTimeValueModel *>::iterator j =
i->second.begin();
j != i->second.end(); ++j) {
SparseTimeValueModel *m = j->second;
if (m) mm.push_back(m);
}
}
return mm;
}
bool
FeatureExtractionModelTransformer::willHaveAdditionalOutputModels()
{
for (std::map<int, bool>::const_iterator i =
m_needAdditionalModels.begin();
i != m_needAdditionalModels.end(); ++i) {
if (i->second) return true;
}
return false;
}
SparseTimeValueModel *
FeatureExtractionModelTransformer::getAdditionalModel(int n, int binNo)
{
// std::cerr << "getAdditionalModel(" << n << ", " << binNo << ")" << std::endl;
if (binNo == 0) {
std::cerr << "Internal error: binNo == 0 in getAdditionalModel (should be using primary model)" << std::endl;
return 0;
}
if (!m_needAdditionalModels[n]) return 0;
if (!isOutput<SparseTimeValueModel>(n)) return 0;
if (m_additionalModels[n][binNo]) return m_additionalModels[n][binNo];
std::cerr << "getAdditionalModel(" << n << ", " << binNo << "): creating" << std::endl;
SparseTimeValueModel *baseModel = getConformingOutput<SparseTimeValueModel>(n);
if (!baseModel) return 0;
std::cerr << "getAdditionalModel(" << n << ", " << binNo << "): (from " << baseModel << ")" << std::endl;
SparseTimeValueModel *additional =
new SparseTimeValueModel(baseModel->getSampleRate(),
baseModel->getResolution(),
baseModel->getValueMinimum(),
baseModel->getValueMaximum(),
false);
additional->setScaleUnits(baseModel->getScaleUnits());
additional->setRDFTypeURI(baseModel->getRDFTypeURI());
m_additionalModels[n][binNo] = additional;
return additional;
}
DenseTimeValueModel *
FeatureExtractionModelTransformer::getConformingInput()
{
// SVDEBUG << "FeatureExtractionModelTransformer::getConformingInput: input model is " << getInputModel() << endl;
DenseTimeValueModel *dtvm =
dynamic_cast<DenseTimeValueModel *>(getInputModel());
if (!dtvm) {
SVDEBUG << "FeatureExtractionModelTransformer::getConformingInput: WARNING: Input model is not conformable to DenseTimeValueModel" << endl;
}
return dtvm;
}
void
FeatureExtractionModelTransformer::run()
{
DenseTimeValueModel *input = getConformingInput();
if (!input) return;
if (m_outputs.empty()) return;
Transform primaryTransform = m_transforms[0];
while (!input->isReady() && !m_abandoned) {
cerr << "FeatureExtractionModelTransformer::run: Waiting for input model to be ready..." << endl;
usleep(500000);
}
if (m_abandoned) return;
int sampleRate = input->getSampleRate();
int channelCount = input->getChannelCount();
if ((int)m_plugin->getMaxChannelCount() < channelCount) {
channelCount = 1;
}
float **buffers = new float*[channelCount];
for (int ch = 0; ch < channelCount; ++ch) {
buffers[ch] = new float[primaryTransform.getBlockSize() + 2];
}
int stepSize = primaryTransform.getStepSize();
int blockSize = primaryTransform.getBlockSize();
bool frequencyDomain = (m_plugin->getInputDomain() ==
Vamp::Plugin::FrequencyDomain);
std::vector<FFTModel *> fftModels;
if (frequencyDomain) {
for (int ch = 0; ch < channelCount; ++ch) {
FFTModel *model = new FFTModel
(getConformingInput(),
channelCount == 1 ? m_input.getChannel() : ch,
primaryTransform.getWindowType(),
blockSize,
stepSize,
blockSize,
false,
StorageAdviser::PrecisionCritical);
if (!model->isOK()) {
delete model;
for (int j = 0; j < (int)m_outputNos.size(); ++j) {
setCompletion(j, 100);
}
//!!! need a better way to handle this -- previously we were using a QMessageBox but that isn't an appropriate thing to do here either
throw AllocationFailed("Failed to create the FFT model for this feature extraction model transformer");
}
model->resume();
fftModels.push_back(model);
}
}
long startFrame = m_input.getModel()->getStartFrame();
long endFrame = m_input.getModel()->getEndFrame();
RealTime contextStartRT = primaryTransform.getStartTime();
RealTime contextDurationRT = primaryTransform.getDuration();
long contextStart =
RealTime::realTime2Frame(contextStartRT, sampleRate);
long contextDuration =
RealTime::realTime2Frame(contextDurationRT, sampleRate);
if (contextStart == 0 || contextStart < startFrame) {
contextStart = startFrame;
}
if (contextDuration == 0) {
contextDuration = endFrame - contextStart;
}
if (contextStart + contextDuration > endFrame) {
contextDuration = endFrame - contextStart;
}
long blockFrame = contextStart;
long prevCompletion = 0;
for (int j = 0; j < (int)m_outputNos.size(); ++j) {
setCompletion(j, 0);
}
float *reals = 0;
float *imaginaries = 0;
if (frequencyDomain) {
reals = new float[blockSize/2 + 1];
imaginaries = new float[blockSize/2 + 1];
}
QString error = "";
while (!m_abandoned) {
if (frequencyDomain) {
if (blockFrame - int(blockSize)/2 >
contextStart + contextDuration) break;
} else {
if (blockFrame >=
contextStart + contextDuration) break;
}
// SVDEBUG << "FeatureExtractionModelTransformer::run: blockFrame "
// << blockFrame << ", endFrame " << endFrame << ", blockSize "
// << blockSize << endl;
long completion =
(((blockFrame - contextStart) / stepSize) * 99) /
(contextDuration / stepSize + 1);
// channelCount is either m_input.getModel()->channelCount or 1
if (frequencyDomain) {
for (int ch = 0; ch < channelCount; ++ch) {
int column = (blockFrame - startFrame) / stepSize;
fftModels[ch]->getValuesAt(column, reals, imaginaries);
for (int i = 0; i <= blockSize/2; ++i) {
buffers[ch][i*2] = reals[i];
buffers[ch][i*2+1] = imaginaries[i];
}
error = fftModels[ch]->getError();
if (error != "") {
cerr << "FeatureExtractionModelTransformer::run: Abandoning, error is " << error << endl;
m_abandoned = true;
m_message = error;
}
}
} else {
getFrames(channelCount, blockFrame, blockSize, buffers);
}
if (m_abandoned) break;
Vamp::Plugin::FeatureSet features = m_plugin->process
(buffers, Vamp::RealTime::frame2RealTime(blockFrame, sampleRate));
if (m_abandoned) break;
for (int j = 0; j < (int)m_outputNos.size(); ++j) {
for (int fi = 0; fi < (int)features[m_outputNos[j]].size(); ++fi) {
Vamp::Plugin::Feature feature = features[m_outputNos[j]][fi];
addFeature(j, blockFrame, feature);
}
}
if (blockFrame == contextStart || completion > prevCompletion) {
for (int j = 0; j < (int)m_outputNos.size(); ++j) {
setCompletion(j, completion);
}
prevCompletion = completion;
}
blockFrame += stepSize;
}
if (!m_abandoned) {
Vamp::Plugin::FeatureSet features = m_plugin->getRemainingFeatures();
for (int j = 0; j < (int)m_outputNos.size(); ++j) {
for (int fi = 0; fi < (int)features[m_outputNos[j]].size(); ++fi) {
Vamp::Plugin::Feature feature = features[m_outputNos[j]][fi];
addFeature(j, blockFrame, feature);
}
}
}
for (int j = 0; j < (int)m_outputNos.size(); ++j) {
setCompletion(j, 100);
}
if (frequencyDomain) {
for (int ch = 0; ch < channelCount; ++ch) {
delete fftModels[ch];
}
delete[] reals;
delete[] imaginaries;
}
for (int ch = 0; ch < channelCount; ++ch) {
delete[] buffers[ch];
}
delete[] buffers;
}
void
FeatureExtractionModelTransformer::getFrames(int channelCount,
long startFrame, long size,
float **buffers)
{
long offset = 0;
if (startFrame < 0) {
for (int c = 0; c < channelCount; ++c) {
for (int i = 0; i < size && startFrame + i < 0; ++i) {
buffers[c][i] = 0.0f;
}
}
offset = -startFrame;
size -= offset;
if (size <= 0) return;
startFrame = 0;
}
DenseTimeValueModel *input = getConformingInput();
if (!input) return;
long got = 0;
if (channelCount == 1) {
got = input->getData(m_input.getChannel(), startFrame, size,
buffers[0] + offset);
if (m_input.getChannel() == -1 && input->getChannelCount() > 1) {
// use mean instead of sum, as plugin input
float cc = float(input->getChannelCount());
for (long i = 0; i < size; ++i) {
buffers[0][i + offset] /= cc;
}
}
} else {
float **writebuf = buffers;
if (offset > 0) {
writebuf = new float *[channelCount];
for (int i = 0; i < channelCount; ++i) {
writebuf[i] = buffers[i] + offset;
}
}
got = input->getData(0, channelCount-1, startFrame, size, writebuf);
if (writebuf != buffers) delete[] writebuf;
}
while (got < size) {
for (int c = 0; c < channelCount; ++c) {
buffers[c][got + offset] = 0.0;
}
++got;
}
}
void
FeatureExtractionModelTransformer::addFeature(int n,
int blockFrame,
const Vamp::Plugin::Feature &feature)
{
int inputRate = m_input.getModel()->getSampleRate();
// cerr << "FeatureExtractionModelTransformer::addFeature: blockFrame = "
// << blockFrame << ", hasTimestamp = " << feature.hasTimestamp
// << ", timestamp = " << feature.timestamp << ", hasDuration = "
// << feature.hasDuration << ", duration = " << feature.duration
// << endl;
int frame = blockFrame;
if (m_descriptors[n]->sampleType ==
Vamp::Plugin::OutputDescriptor::VariableSampleRate) {
if (!feature.hasTimestamp) {
cerr
<< "WARNING: FeatureExtractionModelTransformer::addFeature: "
<< "Feature has variable sample rate but no timestamp!"
<< endl;
return;
} else {
frame = Vamp::RealTime::realTime2Frame(feature.timestamp, inputRate);
}
} else if (m_descriptors[n]->sampleType ==
Vamp::Plugin::OutputDescriptor::FixedSampleRate) {
if (!feature.hasTimestamp) {
++m_fixedRateFeatureNos[n];
} else {
RealTime ts(feature.timestamp.sec, feature.timestamp.nsec);
m_fixedRateFeatureNos[n] =
lrint(ts.toDouble() * m_descriptors[n]->sampleRate);
}
// cerr << "m_fixedRateFeatureNo = " << m_fixedRateFeatureNo
// << ", m_descriptor->sampleRate = " << m_descriptor->sampleRate
// << ", inputRate = " << inputRate
// << " giving frame = ";
frame = lrintf((m_fixedRateFeatureNos[n] / m_descriptors[n]->sampleRate)
* int(inputRate));
}
if (frame < 0) {
cerr
<< "WARNING: FeatureExtractionModelTransformer::addFeature: "
<< "Negative frame counts are not supported (frame = " << frame
<< " from timestamp " << feature.timestamp
<< "), dropping feature"
<< endl;
return;
}
// Rather than repeat the complicated tests from the constructor
// to determine what sort of model we must be adding the features
// to, we instead test what sort of model the constructor decided
// to create.
if (isOutput<SparseOneDimensionalModel>(n)) {
SparseOneDimensionalModel *model =
getConformingOutput<SparseOneDimensionalModel>(n);
if (!model) return;
model->addPoint(SparseOneDimensionalModel::Point
(frame, feature.label.c_str()));
} else if (isOutput<SparseTimeValueModel>(n)) {
SparseTimeValueModel *model =
getConformingOutput<SparseTimeValueModel>(n);
if (!model) return;
for (int i = 0; i < (int)feature.values.size(); ++i) {
float value = feature.values[i];
QString label = feature.label.c_str();
if (feature.values.size() > 1) {
label = QString("[%1] %2").arg(i+1).arg(label);
}
SparseTimeValueModel *targetModel = model;
if (m_needAdditionalModels[n] && i > 0) {
targetModel = getAdditionalModel(n, i);
if (!targetModel) targetModel = model;
// std::cerr << "adding point to model " << targetModel
// << " for output " << n << " bin " << i << std::endl;
}
targetModel->addPoint
(SparseTimeValueModel::Point(frame, value, label));
}
} else if (isOutput<FlexiNoteModel>(n) || isOutput<NoteModel>(n) || isOutput<RegionModel>(n)) { //GF: Added Note Model
int index = 0;
float value = 0.0;
if ((int)feature.values.size() > index) {
value = feature.values[index++];
}
float duration = 1;
if (feature.hasDuration) {
duration = Vamp::RealTime::realTime2Frame(feature.duration, inputRate);
} else {
if ((int)feature.values.size() > index) {
duration = feature.values[index++];
}
}
if (isOutput<FlexiNoteModel>(n)) { // GF: added for flexi note model
float velocity = 100;
if ((int)feature.values.size() > index) {
velocity = feature.values[index++];
}
if (velocity < 0) velocity = 127;
if (velocity > 127) velocity = 127;
FlexiNoteModel *model = getConformingOutput<FlexiNoteModel>(n);
if (!model) return;
model->addPoint(FlexiNoteModel::Point(frame, value, // value is pitch
lrintf(duration),
velocity / 127.f,
feature.label.c_str()));
// GF: end -- added for flexi note model
} else if (isOutput<NoteModel>(n)) {
float velocity = 100;
if ((int)feature.values.size() > index) {
velocity = feature.values[index++];
}
if (velocity < 0) velocity = 127;
if (velocity > 127) velocity = 127;
NoteModel *model = getConformingOutput<NoteModel>(n);
if (!model) return;
model->addPoint(NoteModel::Point(frame, value, // value is pitch
lrintf(duration),
velocity / 127.f,
feature.label.c_str()));
} else {
RegionModel *model = getConformingOutput<RegionModel>(n);
if (!model) return;
if (feature.hasDuration && !feature.values.empty()) {
for (int i = 0; i < (int)feature.values.size(); ++i) {
float value = feature.values[i];
QString label = feature.label.c_str();
if (feature.values.size() > 1) {
label = QString("[%1] %2").arg(i+1).arg(label);
}
model->addPoint(RegionModel::Point(frame, value,
lrintf(duration),
label));
}
} else {
model->addPoint(RegionModel::Point(frame, value,
lrintf(duration),
feature.label.c_str()));
}
}
} else if (isOutput<EditableDenseThreeDimensionalModel>(n)) {
DenseThreeDimensionalModel::Column values =
DenseThreeDimensionalModel::Column::fromStdVector(feature.values);
EditableDenseThreeDimensionalModel *model =
getConformingOutput<EditableDenseThreeDimensionalModel>(n);
if (!model) return;
// cerr << "(note: model resolution = " << model->getResolution() << ")"
// << endl;
if (!feature.hasTimestamp && m_fixedRateFeatureNos[n] >= 0) {
model->setColumn(m_fixedRateFeatureNos[n], values);
} else {
model->setColumn(frame / model->getResolution(), values);
}
} else {
SVDEBUG << "FeatureExtractionModelTransformer::addFeature: Unknown output model type!" << endl;
}
}
void
FeatureExtractionModelTransformer::setCompletion(int n, int completion)
{
// SVDEBUG << "FeatureExtractionModelTransformer::setCompletion("
// << completion << ")" << endl;
if (isOutput<SparseOneDimensionalModel>(n)) {
SparseOneDimensionalModel *model =
getConformingOutput<SparseOneDimensionalModel>(n);
if (!model) return;
if (model->isAbandoning()) abandon();
model->setCompletion(completion, true);
} else if (isOutput<SparseTimeValueModel>(n)) {
SparseTimeValueModel *model =
getConformingOutput<SparseTimeValueModel>(n);
if (!model) return;
if (model->isAbandoning()) abandon();
model->setCompletion(completion, true);
} else if (isOutput<NoteModel>(n)) {
NoteModel *model = getConformingOutput<NoteModel>(n);
if (!model) return;
if (model->isAbandoning()) abandon();
model->setCompletion(completion, true);
} else if (isOutput<FlexiNoteModel>(n)) {
FlexiNoteModel *model = getConformingOutput<FlexiNoteModel>(n);
if (!model) return;
if (model->isAbandoning()) abandon();
model->setCompletion(completion, true);
} else if (isOutput<RegionModel>(n)) {
RegionModel *model = getConformingOutput<RegionModel>(n);
if (!model) return;
if (model->isAbandoning()) abandon();
model->setCompletion(completion, true);
} else if (isOutput<EditableDenseThreeDimensionalModel>(n)) {
EditableDenseThreeDimensionalModel *model =
getConformingOutput<EditableDenseThreeDimensionalModel>(n);
if (!model) return;
if (model->isAbandoning()) abandon();
model->setCompletion(completion, true); //!!!m_context.updates);
}
}
|