File: basen.hpp

package info (click to toggle)
sonic-visualiser 5.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,744 kB
  • sloc: cpp: 158,888; ansic: 11,920; sh: 1,785; makefile: 517; xml: 64; perl: 31
file content (289 lines) | stat: -rw-r--r-- 8,856 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/**
 * base-n, 1.0
 * Copyright (C) 2012 Andrzej Zawadzki (azawadzki@gmail.com)
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
**/
#ifndef BASEN_HPP
#define BASEN_HPP

#include <algorithm>
#include <cctype>
#include <cassert>
#include <cstring>

namespace bn
{

template<class Iter1, class Iter2>
void encode_b16(Iter1 start, Iter1 end, Iter2 out);

template<class Iter1, class Iter2>
void encode_b32(Iter1 start, Iter1 end, Iter2 out);

template<class Iter1, class Iter2>
void encode_b64(Iter1 start, Iter1 end, Iter2 out);

template<class Iter1, class Iter2>
void decode_b16(Iter1 start, Iter1 end, Iter2 out);

template<class Iter1, class Iter2>
void decode_b32(Iter1 start, Iter1 end, Iter2 out);

template<class Iter1, class Iter2>
void decode_b64(Iter1 start, Iter1 end, Iter2 out);

namespace impl
{

const int Error = -1;

namespace {

char extract_partial_bits(char value, size_t start_bit, size_t bits_count)
{
    assert(start_bit + bits_count < 8);
    // shift extracted bits to the beginning of the byte
    char t1 = value >> (8 - bits_count - start_bit);
    // mask out bits on the left
    char t2 = t1 & ~(0xff << bits_count);
    return t2;
}

char extract_overlapping_bits(char previous, char next, size_t start_bit, size_t bits_count)
{
    assert(start_bit + bits_count < 16);
    size_t bits_count_in_previous = 8 - start_bit;
    size_t bits_count_in_next = bits_count - bits_count_in_previous;
    char t1 = previous << bits_count_in_next;
    char t2 = next >> (8 - bits_count_in_next) & ~(0xff << bits_count_in_next) ;
    return (t1 | t2) & ~(0xff << bits_count);
}

}

struct b16_conversion_traits
{
    static size_t group_length()
    {
       return 4;
    }

    static char encode(unsigned int index)
    {
        const char* const dictionary = "0123456789ABCDEF";
        assert(index < strlen(dictionary));
        return dictionary[index];
    }

    static char decode(char c)
    {
        if (c >= '0' && c <= '9') {
            return c - '0';
        } else if (c >= 'A' && c <= 'F') {
            return c - 'A' + 10;
        }
        return Error;
    }
};

struct b32_conversion_traits
{
    static size_t group_length()
    {
       return 5;
    }

    static char encode(unsigned int index)
    {
        const char * dictionary = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";
        assert(index < strlen(dictionary));
        return dictionary[index];
    }

    static char decode(char c)
    {
        if (c >= 'A' && c <= 'Z') {
            return c - 'A';
        } else if (c >= '2' && c <= '7') {
            return c - '2' + 26;
        }
        return Error;
    }
};

struct b64_conversion_traits
{
    static size_t group_length()
    {
       return 6;
    }

    static char encode(unsigned int index)
    {
        const char* const dictionary = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
        assert(index < strlen(dictionary));
        return dictionary[index];
    }

    static char decode(char c)
    {
        const int alph_len = 26;
        if (c >= 'A' && c <= 'Z') {
            return c - 'A';
        } else if (c >= 'a' && c <= 'z') {
            return c - 'a' + alph_len * 1;
        } else if (c >= '0' && c <= '9') {
            return c - '0' + alph_len * 2;
        } else if (c == '+') {
            return c - '+' + alph_len * 2 + 10;
        } else if (c == '/') {
            return c - '/' + alph_len * 2 + 11;
        }
        return Error;
    }
};

template<class ConversionTraits, class Iter1, class Iter2>
void decode(Iter1 start, Iter1 end, Iter2 out)
{
    Iter1 iter = start;
    size_t output_current_bit = 0;
    char buffer = 0;

    while (iter != end) {
        if (std::isspace(*iter)) {
            ++iter;
            continue;
        }
        char value = ConversionTraits::decode(*iter);
        if (value == Error) {
            // malformed data, but let's go on...
            ++iter;
            continue;
        }
        size_t bits_in_current_byte = std::min<size_t>(output_current_bit + ConversionTraits::group_length(), 8) - output_current_bit;
        if (bits_in_current_byte == ConversionTraits::group_length()) {
            // the value fits within current byte, so we can extract it directly
            buffer |= value << (8 - output_current_bit - ConversionTraits::group_length());
            output_current_bit += ConversionTraits::group_length();
            // check if we filled up current byte completely; in such case we flush output and continue
            if (output_current_bit == 8) {
                *out++ = buffer;
                buffer = 0;
                output_current_bit = 0;
            }
        } else {
            // the value spans across the current and the next byte
            size_t bits_in_next_byte = ConversionTraits::group_length() - bits_in_current_byte;
            // fill the current byte and flush it to our output
            buffer |= value >> bits_in_next_byte;
            *out++ = buffer;
            buffer = 0;
            // save the remainder of our value in the buffer; it will be flushed
            // during next iterations
            buffer |= value << (8 - bits_in_next_byte);
            output_current_bit = bits_in_next_byte;
        }
        ++iter;
    }
}

template<class ConversionTraits, class Iter1, class Iter2>
void encode(Iter1 start, Iter1 end, Iter2 out)
{
    Iter1 iter = start;
    size_t start_bit = 0;
    bool has_backlog = false;
    char backlog = 0;

    while (has_backlog || iter != end) {
        if (!has_backlog) {
            if (start_bit + ConversionTraits::group_length() < 8) {
                // the value fits within single byte, so we can extract it
                // directly
                char v = extract_partial_bits(*iter, start_bit, ConversionTraits::group_length());
                *out++ = ConversionTraits::encode(v);
                // since we know that start_bit + ConversionTraits::group_length() < 8 we don't need to go
                // to the next byte
                start_bit += ConversionTraits::group_length();
            } else {
                // our bits are spanning across byte border; we need to keep the
                // starting point and move over to next byte.
                backlog = *iter++;
                has_backlog = true;
            }
        } else {
            // encode value which is made from bits spanning across byte
            // boundary
            char v;
            if (iter == end)
                 v = extract_overlapping_bits(backlog, 0, start_bit, ConversionTraits::group_length());
            else
                 v = extract_overlapping_bits(backlog, *iter, start_bit, ConversionTraits::group_length());
            *out++ = ConversionTraits::encode(v);
            has_backlog = false;
            start_bit = (start_bit + ConversionTraits::group_length()) % 8;
        }
    }
}

} // impl

using namespace bn::impl;

template<class Iter1, class Iter2>
void encode_b16(Iter1 start, Iter1 end, Iter2 out)
{
    encode<b16_conversion_traits>(start, end, out);
}

template<class Iter1, class Iter2>
void encode_b32(Iter1 start, Iter1 end, Iter2 out)
{
    encode<b32_conversion_traits>(start, end, out);
}

template<class Iter1, class Iter2>
void encode_b64(Iter1 start, Iter1 end, Iter2 out)
{
    encode<b64_conversion_traits>(start, end, out);
}

template<class Iter1, class Iter2>
void decode_b16(Iter1 start, Iter1 end, Iter2 out)
{
    decode<b16_conversion_traits>(start, end, out);
}

template<class Iter1, class Iter2>
void decode_b32(Iter1 start, Iter1 end, Iter2 out)
{
    decode<b32_conversion_traits>(start, end, out);
}

template<class Iter1, class Iter2>
void decode_b64(Iter1 start, Iter1 end, Iter2 out)
{
    decode<b64_conversion_traits>(start, end, out);
}

} // bn

#endif // BASEN_HPP