1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/**
* base-n, 1.0
* Copyright (C) 2012 Andrzej Zawadzki (azawadzki@gmail.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
**/
#ifndef BASEN_HPP
#define BASEN_HPP
#include <algorithm>
#include <cctype>
#include <cassert>
#include <cstring>
namespace bn
{
template<class Iter1, class Iter2>
void encode_b16(Iter1 start, Iter1 end, Iter2 out);
template<class Iter1, class Iter2>
void encode_b32(Iter1 start, Iter1 end, Iter2 out);
template<class Iter1, class Iter2>
void encode_b64(Iter1 start, Iter1 end, Iter2 out);
template<class Iter1, class Iter2>
void decode_b16(Iter1 start, Iter1 end, Iter2 out);
template<class Iter1, class Iter2>
void decode_b32(Iter1 start, Iter1 end, Iter2 out);
template<class Iter1, class Iter2>
void decode_b64(Iter1 start, Iter1 end, Iter2 out);
namespace impl
{
const int Error = -1;
namespace {
char extract_partial_bits(char value, size_t start_bit, size_t bits_count)
{
assert(start_bit + bits_count < 8);
// shift extracted bits to the beginning of the byte
char t1 = value >> (8 - bits_count - start_bit);
// mask out bits on the left
char t2 = t1 & ~(0xff << bits_count);
return t2;
}
char extract_overlapping_bits(char previous, char next, size_t start_bit, size_t bits_count)
{
assert(start_bit + bits_count < 16);
size_t bits_count_in_previous = 8 - start_bit;
size_t bits_count_in_next = bits_count - bits_count_in_previous;
char t1 = previous << bits_count_in_next;
char t2 = next >> (8 - bits_count_in_next) & ~(0xff << bits_count_in_next) ;
return (t1 | t2) & ~(0xff << bits_count);
}
}
struct b16_conversion_traits
{
static size_t group_length()
{
return 4;
}
static char encode(unsigned int index)
{
const char* const dictionary = "0123456789ABCDEF";
assert(index < strlen(dictionary));
return dictionary[index];
}
static char decode(char c)
{
if (c >= '0' && c <= '9') {
return c - '0';
} else if (c >= 'A' && c <= 'F') {
return c - 'A' + 10;
}
return Error;
}
};
struct b32_conversion_traits
{
static size_t group_length()
{
return 5;
}
static char encode(unsigned int index)
{
const char * dictionary = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";
assert(index < strlen(dictionary));
return dictionary[index];
}
static char decode(char c)
{
if (c >= 'A' && c <= 'Z') {
return c - 'A';
} else if (c >= '2' && c <= '7') {
return c - '2' + 26;
}
return Error;
}
};
struct b64_conversion_traits
{
static size_t group_length()
{
return 6;
}
static char encode(unsigned int index)
{
const char* const dictionary = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
assert(index < strlen(dictionary));
return dictionary[index];
}
static char decode(char c)
{
const int alph_len = 26;
if (c >= 'A' && c <= 'Z') {
return c - 'A';
} else if (c >= 'a' && c <= 'z') {
return c - 'a' + alph_len * 1;
} else if (c >= '0' && c <= '9') {
return c - '0' + alph_len * 2;
} else if (c == '+') {
return c - '+' + alph_len * 2 + 10;
} else if (c == '/') {
return c - '/' + alph_len * 2 + 11;
}
return Error;
}
};
template<class ConversionTraits, class Iter1, class Iter2>
void decode(Iter1 start, Iter1 end, Iter2 out)
{
Iter1 iter = start;
size_t output_current_bit = 0;
char buffer = 0;
while (iter != end) {
if (std::isspace(*iter)) {
++iter;
continue;
}
char value = ConversionTraits::decode(*iter);
if (value == Error) {
// malformed data, but let's go on...
++iter;
continue;
}
size_t bits_in_current_byte = std::min<size_t>(output_current_bit + ConversionTraits::group_length(), 8) - output_current_bit;
if (bits_in_current_byte == ConversionTraits::group_length()) {
// the value fits within current byte, so we can extract it directly
buffer |= value << (8 - output_current_bit - ConversionTraits::group_length());
output_current_bit += ConversionTraits::group_length();
// check if we filled up current byte completely; in such case we flush output and continue
if (output_current_bit == 8) {
*out++ = buffer;
buffer = 0;
output_current_bit = 0;
}
} else {
// the value spans across the current and the next byte
size_t bits_in_next_byte = ConversionTraits::group_length() - bits_in_current_byte;
// fill the current byte and flush it to our output
buffer |= value >> bits_in_next_byte;
*out++ = buffer;
buffer = 0;
// save the remainder of our value in the buffer; it will be flushed
// during next iterations
buffer |= value << (8 - bits_in_next_byte);
output_current_bit = bits_in_next_byte;
}
++iter;
}
}
template<class ConversionTraits, class Iter1, class Iter2>
void encode(Iter1 start, Iter1 end, Iter2 out)
{
Iter1 iter = start;
size_t start_bit = 0;
bool has_backlog = false;
char backlog = 0;
while (has_backlog || iter != end) {
if (!has_backlog) {
if (start_bit + ConversionTraits::group_length() < 8) {
// the value fits within single byte, so we can extract it
// directly
char v = extract_partial_bits(*iter, start_bit, ConversionTraits::group_length());
*out++ = ConversionTraits::encode(v);
// since we know that start_bit + ConversionTraits::group_length() < 8 we don't need to go
// to the next byte
start_bit += ConversionTraits::group_length();
} else {
// our bits are spanning across byte border; we need to keep the
// starting point and move over to next byte.
backlog = *iter++;
has_backlog = true;
}
} else {
// encode value which is made from bits spanning across byte
// boundary
char v;
if (iter == end)
v = extract_overlapping_bits(backlog, 0, start_bit, ConversionTraits::group_length());
else
v = extract_overlapping_bits(backlog, *iter, start_bit, ConversionTraits::group_length());
*out++ = ConversionTraits::encode(v);
has_backlog = false;
start_bit = (start_bit + ConversionTraits::group_length()) % 8;
}
}
}
} // impl
using namespace bn::impl;
template<class Iter1, class Iter2>
void encode_b16(Iter1 start, Iter1 end, Iter2 out)
{
encode<b16_conversion_traits>(start, end, out);
}
template<class Iter1, class Iter2>
void encode_b32(Iter1 start, Iter1 end, Iter2 out)
{
encode<b32_conversion_traits>(start, end, out);
}
template<class Iter1, class Iter2>
void encode_b64(Iter1 start, Iter1 end, Iter2 out)
{
encode<b64_conversion_traits>(start, end, out);
}
template<class Iter1, class Iter2>
void decode_b16(Iter1 start, Iter1 end, Iter2 out)
{
decode<b16_conversion_traits>(start, end, out);
}
template<class Iter1, class Iter2>
void decode_b32(Iter1 start, Iter1 end, Iter2 out)
{
decode<b32_conversion_traits>(start, end, out);
}
template<class Iter1, class Iter2>
void decode_b64(Iter1 start, Iter1 end, Iter2 out)
{
decode<b64_conversion_traits>(start, end, out);
}
} // bn
#endif // BASEN_HPP
|