1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2006-2016 Chris Cannam and QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "ColumnOp.h"
#include <cmath>
#include <algorithm>
#include <iostream>
#include "Debug.h"
#include "Profiler.h"
using namespace std;
namespace sv {
ColumnOp::Column
ColumnOp::fftScale(const Column &in, int fftSize)
{
return applyGain(in, 2.0 / fftSize);
}
ColumnOp::Column
ColumnOp::peakPick(const Column &in)
{
Column out(in.size(), 0.f);
for (int i = 0; in_range_for(in, i); ++i) {
if (isPeak(in, i)) {
out[i] = in[i];
}
}
return out;
}
ColumnOp::Column
ColumnOp::normalize(const Column &in, ColumnNormalization n) {
if (n == ColumnNormalization::None || in.empty()) {
return in;
}
float shift = 0.f;
float scale = 1.f;
if (n == ColumnNormalization::Range01) {
float min = 0.f;
float max = 0.f;
bool have = false;
for (auto v: in) {
if (v < min || !have) {
min = v;
}
if (v > max || !have) {
max = v;
}
have = true;
}
if (min != 0.f) {
shift = -min;
max -= min;
}
if (max != 0.f) {
scale = 1.f / max;
}
} else if (n == ColumnNormalization::Sum1) {
float sum = 0.f;
for (auto v: in) {
sum += fabsf(v);
}
if (sum != 0.f) {
scale = 1.f / sum;
}
} else {
float max = 0.f;
for (auto v: in) {
v = fabsf(v);
if (v > max) {
max = v;
}
}
if (n == ColumnNormalization::Max1) {
if (max != 0.f) {
scale = 1.f / max;
}
} else if (n == ColumnNormalization::Hybrid) {
if (max > 0.f) {
scale = log10f(max + 1.f) / max;
}
}
}
return applyGain(applyShift(in, shift), scale);
}
ColumnOp::Column
ColumnOp::distribute(const Column &in,
int h,
const vector<double> &binfory,
int minbin,
bool interpolate)
{
Column out(h, 0.f);
distribute(out, in, h, binfory, minbin, interpolate);
return out;
}
void
ColumnOp::distribute(Column &out,
const Column &in,
int h,
const std::vector<double> &binfory,
int minbin,
bool interpolate)
{
Profiler profiler("ColumnOp::distribute");
int bins = int(in.size());
if (interpolate) {
// If the bins are all closer together than the target y
// coordinate increments, then we don't want to interpolate
// after all. But because the binfory mapping isn't
// necessarily linear, just checking e.g. whether bins > h is
// not enough -- the bins could still be spaced more widely at
// either end of the scale. We are prepared to assume however
// that if the bins are closer at both ends of the scale, they
// aren't going to diverge mysteriously in the middle.
if (h > 1 &&
fabs(binfory[1] - binfory[0]) >= 1.0 &&
fabs(binfory[h-1] - binfory[h-2]) >= 1.0) {
interpolate = false;
}
}
bool actuallyInterpolate = interpolate;
for (int y = 0; y < h; ++y) {
// As remarked above, it's common for bins to be more
// widely-spaced at one end than the other. We switch
// interpolation off or on if we reach a step at which
// bins-per-y drops above or below 1.0. (But we won't do so
// repeatedly)
if (actuallyInterpolate) {
if (y > 0 &&
fabs(binfory[y] - binfory[y-1]) > 1.0) {
interpolate = false;
actuallyInterpolate = false;
}
} else if (interpolate) {
if (y > 0 &&
fabs(binfory[y] - binfory[y-1]) < 1.0) {
actuallyInterpolate = true;
}
}
if (actuallyInterpolate) {
double sy = binfory[y] - minbin - 0.5;
double syf = floor(sy);
int mainbin = int(syf);
int other = mainbin;
if (sy > syf) {
other = mainbin + 1;
} else if (sy < syf) {
other = mainbin - 1;
}
if (mainbin < 0) {
mainbin = 0;
}
if (mainbin >= bins) {
mainbin = bins - 1;
}
if (other < 0) {
other = 0;
}
if (other >= bins) {
other = bins - 1;
}
double prop = 1.0 - fabs(sy - syf);
double v0 = in[mainbin];
double v1 = in[other];
out[y] = float(prop * v0 + (1.0 - prop) * v1);
} else {
double sy0 = binfory[y] - minbin;
double sy1;
if (y+1 < h) {
sy1 = binfory[y+1] - minbin;
} else {
sy1 = bins;
}
int by0 = int(sy0 + 0.0001);
int by1 = int(sy1 + 0.0001);
if (by0 < 0 || by0 >= bins || by1 > bins) {
SVCERR << "ERROR: bin index out of range in ColumnOp::distribute: by0 = " << by0 << ", by1 = " << by1 << ", sy0 = " << sy0 << ", sy1 = " << sy1 << ", y = " << y << ", binfory[y] = " << binfory[y] << ", minbin = " << minbin << ", bins = " << bins << endl;
continue;
}
for (int bin = by0; bin == by0 || bin < by1; ++bin) {
float value = in[bin];
if (bin == by0 || value > out[y]) {
out[y] = value;
}
}
}
}
}
} // end namespace sv
|