1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2006 QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "RangeMapper.h"
#include "system/System.h"
#include <cassert>
#include <cmath>
#include <iostream>
#include <stdexcept>
namespace sv {
LinearRangeMapper::LinearRangeMapper(int minpos, int maxpos,
double minval, double maxval,
QString unit, bool inverted,
std::map<int, QString> labels) :
m_minpos(minpos),
m_maxpos(maxpos),
m_minval(minval),
m_maxval(maxval),
m_unit(unit),
m_inverted(inverted),
m_labels(labels)
{
if (m_maxval == m_minval) {
throw std::logic_error("LinearRangeMapper: maxval must differ from minval");
}
if (m_maxpos == m_minpos) {
throw std::logic_error("LinearRangeMapper: maxpos must differ from minpos");
}
}
int
LinearRangeMapper::getPositionForValue(double value) const
{
int position = getPositionForValueUnclamped(value);
if (position < m_minpos) position = m_minpos;
if (position > m_maxpos) position = m_maxpos;
return position;
}
int
LinearRangeMapper::getPositionForValueUnclamped(double value) const
{
int position = m_minpos +
int(lrint(((value - m_minval) / (m_maxval - m_minval))
* (m_maxpos - m_minpos)));
if (m_inverted) return m_maxpos - (position - m_minpos);
else return position;
}
double
LinearRangeMapper::getValueForPosition(int position) const
{
if (position < m_minpos) position = m_minpos;
if (position > m_maxpos) position = m_maxpos;
double value = getValueForPositionUnclamped(position);
return value;
}
double
LinearRangeMapper::getValueForPositionUnclamped(int position) const
{
if (m_inverted) position = m_maxpos - (position - m_minpos);
double value = m_minval +
((double(position - m_minpos) / double(m_maxpos - m_minpos))
* (m_maxval - m_minval));
// cerr << "getValueForPositionUnclamped(" << position << "): minval " << m_minval << ", maxval " << m_maxval << ", value " << value << endl;
return value;
}
QString
LinearRangeMapper::getLabel(int position) const
{
if (m_labels.find(position) != m_labels.end()) {
return m_labels.at(position);
} else {
return "";
}
}
LogRangeMapper::LogRangeMapper(int minpos, int maxpos,
double minval, double maxval,
QString unit, bool inverted) :
m_minpos(minpos),
m_maxpos(maxpos),
m_unit(unit),
m_inverted(inverted)
{
convertMinMax(minpos, maxpos, minval, maxval, m_minlog, m_ratio);
// cerr << "LogRangeMapper: minpos " << minpos << ", maxpos "
// << maxpos << ", minval " << minval << ", maxval "
// << maxval << ", minlog " << m_minlog << ", ratio " << m_ratio
// << ", unit " << unit << endl;
if (m_maxpos == m_minpos) {
throw std::logic_error("LogRangeMapper: maxpos must differ from minpos");
}
m_maxlog = (m_maxpos - m_minpos) / m_ratio + m_minlog;
// cerr << "LogRangeMapper: maxlog = " << m_maxlog << endl;
}
void
LogRangeMapper::convertMinMax(int minpos, int maxpos,
double minval, double maxval,
double &minlog, double &ratio)
{
static double thresh = powf(10, -10);
if (minval < thresh) minval = thresh;
minlog = log10(minval);
ratio = (maxpos - minpos) / (log10(maxval) - minlog);
}
void
LogRangeMapper::convertRatioMinLog(double ratio, double minlog,
int minpos, int maxpos,
double &minval, double &maxval)
{
minval = pow(10, minlog);
maxval = pow(10, (maxpos - minpos) / ratio + minlog);
}
int
LogRangeMapper::getPositionForValue(double value) const
{
int position = getPositionForValueUnclamped(value);
if (position < m_minpos) position = m_minpos;
if (position > m_maxpos) position = m_maxpos;
return position;
}
int
LogRangeMapper::getPositionForValueUnclamped(double value) const
{
static double thresh = pow(10, -10);
if (value < thresh) value = thresh;
int position = int(lrint((log10(value) - m_minlog) * m_ratio)) + m_minpos;
if (m_inverted) return m_maxpos - (position - m_minpos);
else return position;
}
double
LogRangeMapper::getValueForPosition(int position) const
{
if (position < m_minpos) position = m_minpos;
if (position > m_maxpos) position = m_maxpos;
double value = getValueForPositionUnclamped(position);
return value;
}
double
LogRangeMapper::getValueForPositionUnclamped(int position) const
{
if (m_inverted) position = m_maxpos - (position - m_minpos);
double value = pow(10, (position - m_minpos) / m_ratio + m_minlog);
return value;
}
InterpolatingRangeMapper::InterpolatingRangeMapper(CoordMap pointMappings,
QString unit) :
m_mappings(pointMappings),
m_unit(unit)
{
for (CoordMap::const_iterator i = m_mappings.begin();
i != m_mappings.end(); ++i) {
m_reverse[i->second] = i->first;
}
}
int
InterpolatingRangeMapper::getPositionForValue(double value) const
{
int pos = getPositionForValueUnclamped(value);
CoordMap::const_iterator i = m_mappings.begin();
if (pos < i->second) pos = i->second;
i = m_mappings.end(); --i;
if (pos > i->second) pos = i->second;
return pos;
}
int
InterpolatingRangeMapper::getPositionForValueUnclamped(double value) const
{
double p = interpolate(&m_mappings, value);
return int(lrint(p));
}
double
InterpolatingRangeMapper::getValueForPosition(int position) const
{
double val = getValueForPositionUnclamped(position);
CoordMap::const_iterator i = m_mappings.begin();
if (val < i->first) val = i->first;
i = m_mappings.end(); --i;
if (val > i->first) val = i->first;
return val;
}
double
InterpolatingRangeMapper::getValueForPositionUnclamped(int position) const
{
return interpolate(&m_reverse, position);
}
template <typename T>
double
InterpolatingRangeMapper::interpolate(T *mapping, double value) const
{
// lower_bound: first element which does not compare less than value
typename T::const_iterator i =
mapping->lower_bound(typename T::key_type(value));
if (i == mapping->begin()) {
// value is less than or equal to first element, so use the
// gradient from first to second and extend it
++i;
}
if (i == mapping->end()) {
// value is off the end, so use the gradient from penultimate
// to ultimate and extend it
--i;
}
typename T::const_iterator j = i;
--j;
double gradient = double(i->second - j->second) / double(i->first - j->first);
return j->second + (value - j->first) * gradient;
}
AutoRangeMapper::AutoRangeMapper(CoordMap pointMappings,
QString unit) :
m_mappings(pointMappings),
m_unit(unit)
{
m_type = chooseMappingTypeFor(m_mappings);
CoordMap::const_iterator first = m_mappings.begin();
CoordMap::const_iterator last = m_mappings.end();
--last;
switch (m_type) {
case StraightLine:
m_mapper = new LinearRangeMapper(first->second, last->second,
first->first, last->first,
unit, false);
break;
case Logarithmic:
m_mapper = new LogRangeMapper(first->second, last->second,
first->first, last->first,
unit, false);
break;
case Interpolating:
m_mapper = new InterpolatingRangeMapper(m_mappings, unit);
break;
}
}
AutoRangeMapper::~AutoRangeMapper()
{
delete m_mapper;
}
AutoRangeMapper::MappingType
AutoRangeMapper::chooseMappingTypeFor(const CoordMap &mappings)
{
// how do we work out whether a linear/log mapping is "close enough"?
CoordMap::const_iterator first = mappings.begin();
CoordMap::const_iterator last = mappings.end();
--last;
LinearRangeMapper linm(first->second, last->second,
first->first, last->first,
"", false);
bool inadequate = false;
for (CoordMap::const_iterator i = mappings.begin();
i != mappings.end(); ++i) {
int candidate = linm.getPositionForValue(i->first);
int diff = candidate - i->second;
if (diff < 0) diff = -diff;
if (diff > 1) {
// cerr << "AutoRangeMapper::chooseMappingTypeFor: diff = " << diff
// << ", straight-line mapping inadequate" << endl;
inadequate = true;
break;
}
}
if (!inadequate) {
return StraightLine;
}
LogRangeMapper logm(first->second, last->second,
first->first, last->first,
"", false);
inadequate = false;
for (CoordMap::const_iterator i = mappings.begin();
i != mappings.end(); ++i) {
int candidate = logm.getPositionForValue(i->first);
int diff = candidate - i->second;
if (diff < 0) diff = -diff;
if (diff > 1) {
// cerr << "AutoRangeMapper::chooseMappingTypeFor: diff = " << diff
// << ", log mapping inadequate" << endl;
inadequate = true;
break;
}
}
if (!inadequate) {
return Logarithmic;
}
return Interpolating;
}
int
AutoRangeMapper::getPositionForValue(double value) const
{
return m_mapper->getPositionForValue(value);
}
double
AutoRangeMapper::getValueForPosition(int position) const
{
return m_mapper->getValueForPosition(position);
}
int
AutoRangeMapper::getPositionForValueUnclamped(double value) const
{
return m_mapper->getPositionForValueUnclamped(value);
}
double
AutoRangeMapper::getValueForPositionUnclamped(int position) const
{
return m_mapper->getValueForPositionUnclamped(position);
}
} // end namespace sv
|