File: RangeMapper.h

package info (click to toggle)
sonic-visualiser 5.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,744 kB
  • sloc: cpp: 158,888; ansic: 11,920; sh: 1,785; makefile: 517; xml: 64; perl: 31
file content (272 lines) | stat: -rw-r--r-- 9,106 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 QMUL.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#ifndef SV_RANGE_MAPPER_H
#define SV_RANGE_MAPPER_H

#include <QString>

#include "Debug.h"
#include <map>

namespace sv {

class RangeMapper 
{
public:
    virtual ~RangeMapper() { }

    /**
     * Return the position that maps to the given value, rounding to
     * the nearest position and clamping to the minimum and maximum
     * extents of the mapper's positional range.
     */
    virtual int getPositionForValue(double value) const = 0;

    /**
     * Return the position that maps to the given value, rounding to
     * the nearest position, without clamping. That is, whatever
     * mapping function is in use will be projected even outside the
     * minimum and maximum extents of the mapper's positional
     * range. (The mapping outside that range is not guaranteed to be
     * exact, except if the mapper is a linear one.)
     */
    virtual int getPositionForValueUnclamped(double value) const = 0;

    /**
     * Return the value mapped from the given position, clamping to
     * the minimum and maximum extents of the mapper's value range.
     */
    virtual double getValueForPosition(int position) const = 0;

    /**
     * Return the value mapped from the given position, without
     * clamping. That is, whatever mapping function is in use will be
     * projected even outside the minimum and maximum extents of the
     * mapper's value range. (The mapping outside that range is not
     * guaranteed to be exact, except if the mapper is a linear one.)
     */
    virtual double getValueForPositionUnclamped(int position) const = 0;

    /**
     * Get the unit of the mapper's value range.
     */
    virtual QString getUnit() const { return ""; }

    /**
     * The mapper may optionally provide special labels for one or
     * more individual positions (such as the minimum position, the
     * default, or indeed all positions). These should be used in any
     * display context in preference to just showing the numerical
     * value for the position. If a position has such a label, return
     * it here.
     */
    virtual QString getLabel(int /* position */) const { return ""; }
};


class LinearRangeMapper : public RangeMapper
{
public:
    /**
     * Map values in range minval->maxval linearly into integer range
     * minpos->maxpos. minval and minpos must be less than maxval and
     * maxpos respectively. If inverted is true, the range will be
     * mapped "backwards" (minval to maxpos and maxval to minpos).
     */
    LinearRangeMapper(int minpos, int maxpos,
                      double minval, double maxval,
                      QString unit = "", bool inverted = false,
                      std::map<int, QString> labels = {});
    
    int getPositionForValue(double value) const override;
    int getPositionForValueUnclamped(double value) const override;

    double getValueForPosition(int position) const override;
    double getValueForPositionUnclamped(int position) const override;

    QString getUnit() const override { return m_unit; }
    QString getLabel(int position) const override;

protected:
    int m_minpos;
    int m_maxpos;
    double m_minval;
    double m_maxval;
    QString m_unit;
    bool m_inverted;
    std::map<int, QString> m_labels;
};

class LogRangeMapper : public RangeMapper
{
public:
    /**
     * Map values in range minval->maxval into integer range
     * minpos->maxpos such that logs of the values are mapped
     * linearly. minval must be greater than zero, and minval and
     * minpos must be less than maxval and maxpos respectively. If
     * inverted is true, the range will be mapped "backwards" (minval
     * to maxpos and maxval to minpos).
     */
    LogRangeMapper(int minpos, int maxpos,
                   double minval, double maxval,
                   QString m_unit = "", bool inverted = false);

    static void convertRatioMinLog(double ratio, double minlog,
                                   int minpos, int maxpos,
                                   double &minval, double &maxval);

    static void convertMinMax(int minpos, int maxpos,
                              double minval, double maxval,
                              double &minlog, double &ratio);

    int getPositionForValue(double value) const override;
    int getPositionForValueUnclamped(double value) const override;

    double getValueForPosition(int position) const override;
    double getValueForPositionUnclamped(int position) const override;

    QString getUnit() const override { return m_unit; }

protected:
    int m_minpos;
    int m_maxpos;
    double m_ratio;
    double m_minlog;
    double m_maxlog;
    QString m_unit;
    bool m_inverted;
};

class InterpolatingRangeMapper : public RangeMapper
{
public:
    typedef std::map<double, int> CoordMap;

    /**
     * Given a series of (value, position) coordinate mappings,
     * construct a range mapper that maps arbitrary values, in the
     * range between minimum and maximum of the provided values, onto
     * coordinates using linear interpolation between the supplied
     * points.
     *
     *!!! todo: Cubic -- more generally useful than linear interpolation
     *!!! todo: inverted flag
     *
     * The set of provided mappings must contain at least two
     * coordinates.
     *
     * It is expected that the values and positions in the coordinate
     * mappings will both be monotonically increasing (i.e. no
     * inflections in the mapping curve). Behaviour is undefined if
     * this is not the case.
     */
    InterpolatingRangeMapper(CoordMap pointMappings,
                             QString unit);

    int getPositionForValue(double value) const override;
    int getPositionForValueUnclamped(double value) const override;

    double getValueForPosition(int position) const override;
    double getValueForPositionUnclamped(int position) const override;

    QString getUnit() const override { return m_unit; }

protected:
    CoordMap m_mappings;
    std::map<int, double> m_reverse;
    QString m_unit;

    template <typename T>
    double interpolate(T *mapping, double v) const;
};

class AutoRangeMapper : public RangeMapper
{
public:
    enum MappingType {
        Interpolating,
        StraightLine,
        Logarithmic,
    };

    typedef std::map<double, int> CoordMap;

    /**
     * Given a series of (value, position) coordinate mappings,
     * construct a range mapper that maps arbitrary values, in the
     * range between minimum and maximum of the provided values, onto
     * coordinates. 
     *
     * The mapping used may be
     * 
     *    Interpolating -- an InterpolatingRangeMapper will be used
     * 
     *    StraightLine -- a LinearRangeMapper from the minimum to
     *    maximum value coordinates will be used, ignoring all other
     *    supplied coordinate mappings
     * 
     *    Logarithmic -- a LogRangeMapper from the minimum to
     *    maximum value coordinates will be used, ignoring all other
     *    supplied coordinate mappings
     *
     * The mapping will be chosen automatically by looking at the
     * supplied coordinates. If the supplied coordinates fall on a
     * straight line, a StraightLine mapping will be used; if they
     * fall on a log curve, a Logarithmic mapping will be used;
     * otherwise an Interpolating mapping will be used.
     *
     *!!! todo: inverted flag
     *
     * The set of provided mappings must contain at least two
     * coordinates, or at least three if the points are not supposed
     * to be in a straight line.
     *
     * It is expected that the values and positions in the coordinate
     * mappings will both be monotonically increasing (i.e. no
     * inflections in the mapping curve). Behaviour is undefined if
     * this is not the case.
     */
    AutoRangeMapper(CoordMap pointMappings,
                    QString unit);

    ~AutoRangeMapper();

    /**
     * Return the mapping type in use.
     */
    MappingType getType() const { return m_type; }

    int getPositionForValue(double value) const override;
    int getPositionForValueUnclamped(double value) const override;

    double getValueForPosition(int position) const override;
    double getValueForPositionUnclamped(int position) const override;

    QString getUnit() const override { return m_unit; }

protected:
    MappingType m_type;
    CoordMap m_mappings;
    QString m_unit;
    RangeMapper *m_mapper;

    MappingType chooseMappingTypeFor(const CoordMap &);
};

} // end namespace sv

#endif