1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2006-2017 Chris Cannam and QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef SV_SCALE_TICK_INTERVALS_H
#define SV_SCALE_TICK_INTERVALS_H
#include <string>
#include <vector>
#include <cmath>
#include "LogRange.h"
#include "Debug.h"
// Can't have this on by default, as we're called on every refresh
//#define DEBUG_SCALE_TICK_INTERVALS 1
namespace sv {
class ScaleTickIntervals
{
public:
struct Range {
double min; // start of value range
double max; // end of value range
int n; // number of divisions (approximate only)
};
struct Tick {
double value; // value this tick represents
std::string label; // value as written
};
typedef std::vector<Tick> Ticks;
/**
* Return a set of ticks that divide the range r linearly into
* roughly r.n equal divisions, in such a way as to yield
* reasonably human-readable labels.
*/
static Ticks linear(Range r) {
return linearTicks(r);
}
/**
* Return a set of ticks that divide the range r into roughly r.n
* logarithmic divisions, in such a way as to yield reasonably
* human-readable labels.
*/
static Ticks logarithmic(Range r) {
LogRange::mapRange(r.min, r.max);
return logarithmicAlready(r);
}
/**
* Return a set of ticks that divide the range r into roughly r.n
* logarithmic divisions, on the asssumption that r.min and r.max
* already represent the logarithms of the boundary values rather
* than the values themselves.
*/
static Ticks logarithmicAlready(Range r) {
return logTicks(r);
}
private:
enum Display {
Fixed,
Scientific,
Auto
};
struct Instruction {
double initial; // value of first tick
double limit; // max from original range
double spacing; // increment between ticks
double roundTo; // what all displayed values should be rounded to
// (if 0.0, then calculate based on precision)
Display display; // whether to use fixed precision (%e, %f, or %g)
int precision; // number of dp (%f) or sf (%e)
bool logUnmap; // true if values represent logs of display values
};
static Instruction linearInstruction(Range r)
{
Display display = Auto;
if (std::isnan(r.min) || std::isinf(r.min) ||
std::isnan(r.max) || std::isinf(r.max)) {
SVDEBUG << "WARNING: ScaleTickIntervals::linearInstruction: NaN or Inf found in range (" << r.min << " -> " << r.max << ")" << endl;
return { 0.0, 1.0, 1.0, 0.0, display, 1, false };
}
if (r.max < r.min) {
return linearInstruction({ r.max, r.min, r.n });
}
if (r.n < 1 || r.max == r.min) {
return { r.min, r.min, 1.0, r.min, display, 1, false };
}
double inc = (r.max - r.min) / r.n;
double digInc = log10(inc);
double digMax = log10(fabs(r.max));
double digMin = log10(fabs(r.min));
int precInc = int(floor(digInc));
double roundTo = pow(10.0, precInc);
if (precInc > -4 && precInc < 4) {
display = Fixed;
} else if ((digMax >= -2.0 && digMax <= 3.0) &&
(digMin >= -3.0 && digMin <= 3.0)) {
display = Fixed;
} else {
display = Scientific;
}
int precRange = int(ceil(digMax - digInc));
int prec = 1;
if (display == Fixed) {
if (digInc < 0) {
prec = -precInc;
} else {
prec = 0;
}
} else {
prec = precRange;
}
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals: calculating linearInstruction" << endl
<< "ScaleTickIntervals: min = " << r.min << ", max = " << r.max
<< ", n = " << r.n << ", inc = " << inc << endl;
SVDEBUG << "ScaleTickIntervals: digMax = " << digMax
<< ", digInc = " << digInc << endl;
SVDEBUG << "ScaleTickIntervals: display = " << display
<< ", inc = " << inc << ", precInc = " << precInc
<< ", precRange = " << precRange
<< ", prec = " << prec << ", roundTo = " << roundTo
<< endl;
#endif
double min = r.min;
if (roundTo != 0.0) {
// Round inc to the nearest multiple of roundTo, and min
// to the next multiple of roundTo up. The small offset of
// eps is included to avoid inc of 2.49999999999 rounding
// to 2 or a min of -0.9999999999 rounding to 0, both of
// which would prevent some of our test cases from getting
// the most natural results.
double eps = 1e-7;
inc = round(inc / roundTo + eps) * roundTo;
if (inc < roundTo) inc = roundTo;
min = ceil(min / roundTo - eps) * roundTo;
if (min > r.max) min = r.max;
if (min == -0.0) min = 0.0;
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals: rounded inc to " << inc
<< " and min to " << min << endl;
#endif
}
if (display == Scientific && min != 0.0) {
double digNewMin = log10(fabs(min));
if (digNewMin < digInc) {
prec = int(ceil(digMax - digNewMin));
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals: min is smaller than increment, adjusting prec to " << prec << endl;
#endif
}
}
return { min, r.max, inc, roundTo, display, prec, false };
}
static Instruction logInstruction(Range r)
{
Display display = Auto;
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals::logInstruction: Range is "
<< r.min << " to " << r.max << endl;
#endif
if (std::isnan(r.min) || std::isinf(r.min) ||
std::isnan(r.max) || std::isinf(r.max)) {
SVDEBUG << "WARNING: ScaleTickIntervals::logInstruction: NaN or Inf found in range (" << r.min << " -> " << r.max << ")" << endl;
return { 0.0, 1.0, 1.0, 0.0, display, 1, false };
}
if (r.n < 1) {
return {};
}
if (r.max < r.min) {
return logInstruction({ r.max, r.min, r.n });
}
if (r.max == r.min) {
return { r.min, r.max, 1.0, r.min, display, 1, true };
}
double inc = (r.max - r.min) / r.n;
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals::logInstruction: "
<< "Naive increment is " << inc << endl;
#endif
int precision = 1;
if (inc < 1.0) {
precision = int(ceil(1.0 - inc)) + 1;
}
double digInc = log10(inc);
int precInc = int(floor(digInc));
double roundIncTo = pow(10.0, precInc);
inc = round(inc / roundIncTo) * roundIncTo;
if (inc < roundIncTo) inc = roundIncTo;
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals::logInstruction: "
<< "Rounded increment to " << inc << endl;
#endif
// if inc is close to giving us powers of two, nudge it
if (fabs(inc - 0.301) < 0.01) {
inc = log10(2.0);
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals::logInstruction: "
<< "Nudged increment to " << inc << " to get powers of two"
<< endl;
#endif
}
double min = r.min;
if (inc != 0.0) {
min = ceil(r.min / inc) * inc;
if (min > r.max) min = r.max;
}
return { min, r.max, inc, 0.0, display, precision, true };
}
static Ticks linearTicks(Range r) {
Instruction instruction = linearInstruction(r);
Ticks ticks = explode(instruction);
return ticks;
}
static Ticks logTicks(Range r) {
Instruction instruction = logInstruction(r);
Ticks ticks = explode(instruction);
return ticks;
}
static Tick makeTick(Display display, int precision, double value) {
if (value == -0.0) {
value = 0.0;
}
const int buflen = 40;
char buffer[buflen];
if (display == Auto) {
double eps = 1e-7;
int digits = (value != 0.0 ?
1 + int(floor(eps + log10(fabs(value)))) :
0);
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "makeTick: display = Auto, precision = "
<< precision << ", value = " << value
<< ", resulting digits = " << digits << endl;
#endif
// This is not the same logic as %g uses for determining
// whether to delegate to use scientific or fixed notation
if (digits < -3 || digits > 4) {
display = Auto; // delegate planning to %g
} else {
display = Fixed;
// in %.*f, the * indicates decimal places, not sig figs
if (precision >= digits) {
precision -= digits;
} else {
precision = 0;
}
}
}
const char *spec = (display == Auto ? "%.*g" :
display == Scientific ? "%.*e" :
"%.*f");
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
snprintf(buffer, buflen, spec, precision, value);
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "makeTick: spec = \"" << spec
<< "\", prec = " << precision << ", value = " << value
<< ", label = \"" << buffer << "\"" << endl;
#endif
return Tick({ value, std::string(buffer) });
}
static Ticks explode(Instruction instruction) {
#ifdef DEBUG_SCALE_TICK_INTERVALS
SVDEBUG << "ScaleTickIntervals::explode:" << endl
<< "initial = " << instruction.initial
<< ", limit = " << instruction.limit
<< ", spacing = " << instruction.spacing
<< ", roundTo = " << instruction.roundTo
<< ", display = " << instruction.display
<< ", precision = " << instruction.precision
<< ", logUnmap = " << instruction.logUnmap
<< endl;
#endif
if (instruction.spacing == 0.0) {
return {};
}
double eps = 1e-7;
if (instruction.spacing < eps * 10.0) {
eps = instruction.spacing / 10.0;
}
double max = instruction.limit;
int n = 0;
Ticks ticks;
int hardLimit = 500;
while (n < hardLimit) { // (Just to avoid an infinite loop if
// the instruction is mathematically
// ill-behaved - the break just below
// is the normal exit condition)
double value = instruction.initial + n * instruction.spacing;
if (value >= max + eps) {
break;
}
if (instruction.logUnmap) {
value = pow(10.0, value);
}
double roundTo = instruction.roundTo;
if (roundTo == 0.0 && value != 0.0) {
// We don't want the internal value secretly not
// matching the displayed one
roundTo =
pow(10, ceil(log10(fabs(value))) - instruction.precision);
}
if (roundTo != 0.0) {
value = roundTo * round(value / roundTo);
}
if (fabs(value) < eps) {
value = 0.0;
}
ticks.push_back(makeTick(instruction.display,
instruction.precision,
value));
++n;
}
return ticks;
}
};
} // end namespace sv
#endif
|