1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef TEST_COLUMN_OP_H
#define TEST_COLUMN_OP_H
#include "../ColumnOp.h"
#include <QObject>
#include <QtTest>
#include <QDir>
#include <iostream>
//#define REPORT 1
using namespace std;
using namespace sv;
class TestColumnOp : public QObject
{
Q_OBJECT
typedef ColumnOp C;
typedef ColumnOp::Column Column;
typedef vector<double> BinMapping;
#ifdef REPORT
template <typename T, typename Alloc>
void report(vector<T, Alloc> v) {
cerr << "Vector is: [ ";
for (int i = 0; i < int(v.size()); ++i) {
if (i > 0) cerr << ", ";
cerr << v[i];
}
cerr << " ]\n";
}
#else
template <typename T, typename Alloc>
void report(vector<T, Alloc> ) { }
#endif
private slots:
void applyGain() {
QCOMPARE(C::applyGain({}, 1.0), Column());
Column c { 1, 2, 3, -4, 5, 6 };
Column actual(C::applyGain(c, 1.5));
Column expected { 1.5f, 3, 4.5f, -6, 7.5f, 9 };
QCOMPARE(actual, expected);
actual = C::applyGain(c, 1.0);
QCOMPARE(actual, c);
actual = C::applyGain(c, 0.0);
expected = { 0, 0, 0, 0, 0, 0 };
QCOMPARE(actual, expected);
}
void fftScale() {
QCOMPARE(C::fftScale({}, 2.0), Column());
Column c { 1, 2, 3, -4, 5 };
Column actual(C::fftScale(c, 8));
Column expected { 0.25f, 0.5f, 0.75f, -1, 1.25f };
QCOMPARE(actual, expected);
}
void isPeak_null() {
QVERIFY(!C::isPeak({}, 0));
QVERIFY(!C::isPeak({}, 1));
QVERIFY(!C::isPeak({}, -1));
}
void isPeak_obvious() {
Column c { 0.4f, 0.5f, 0.3f };
QVERIFY(!C::isPeak(c, 0));
QVERIFY(C::isPeak(c, 1));
QVERIFY(!C::isPeak(c, 2));
}
void isPeak_edges() {
Column c { 0.5f, 0.4f, 0.3f };
QVERIFY(C::isPeak(c, 0));
QVERIFY(!C::isPeak(c, 1));
QVERIFY(!C::isPeak(c, 2));
QVERIFY(!C::isPeak(c, 3));
QVERIFY(!C::isPeak(c, -1));
c = { 1.4f, 1.5f };
QVERIFY(!C::isPeak(c, 0));
QVERIFY(C::isPeak(c, 1));
}
void isPeak_flat() {
Column c { 0.0f, 0.0f, 0.0f };
QVERIFY(C::isPeak(c, 0));
QVERIFY(!C::isPeak(c, 1));
QVERIFY(!C::isPeak(c, 2));
}
void isPeak_mixedSign() {
Column c { 0.4f, -0.5f, -0.3f, -0.6f, 0.1f, -0.3f };
QVERIFY(C::isPeak(c, 0));
QVERIFY(!C::isPeak(c, 1));
QVERIFY(C::isPeak(c, 2));
QVERIFY(!C::isPeak(c, 3));
QVERIFY(C::isPeak(c, 4));
QVERIFY(!C::isPeak(c, 5));
}
void isPeak_duplicate() {
Column c({ 0.5f, 0.5f, 0.4f, 0.4f });
QVERIFY(C::isPeak(c, 0));
QVERIFY(!C::isPeak(c, 1));
QVERIFY(!C::isPeak(c, 2));
QVERIFY(!C::isPeak(c, 3));
c = { 0.4f, 0.4f, 0.5f, 0.5f };
QVERIFY(C::isPeak(c, 0)); // counterintuitive but necessary
QVERIFY(!C::isPeak(c, 1));
QVERIFY(C::isPeak(c, 2));
QVERIFY(!C::isPeak(c, 3));
}
void peakPick() {
QCOMPARE(C::peakPick({}), Column());
Column c({ 0.5f, 0.5f, 0.4f, 0.4f });
QCOMPARE(C::peakPick(c), Column({ 0.5f, 0.0f, 0.0f, 0.0f }));
c = Column({ 0.4f, -0.5f, -0.3f, -0.6f, 0.1f, -0.3f });
QCOMPARE(C::peakPick(c), Column({ 0.4f, 0.0f, -0.3f, 0.0f, 0.1f, 0.0f }));
}
void normalize_null() {
QCOMPARE(C::normalize({}, ColumnNormalization::None), Column());
QCOMPARE(C::normalize({}, ColumnNormalization::Sum1), Column());
QCOMPARE(C::normalize({}, ColumnNormalization::Max1), Column());
QCOMPARE(C::normalize({}, ColumnNormalization::Range01), Column());
QCOMPARE(C::normalize({}, ColumnNormalization::Hybrid), Column());
}
void normalize_none() {
Column c { 1, 2, 3, 4 };
QCOMPARE(C::normalize(c, ColumnNormalization::None), c);
}
void normalize_none_mixedSign() {
Column c { 1, 2, -3, -4 };
QCOMPARE(C::normalize(c, ColumnNormalization::None), c);
}
void normalize_sum1() {
Column c { 1, 2, 4, 3 };
QCOMPARE(C::normalize(c, ColumnNormalization::Sum1),
Column({ 0.1f, 0.2f, 0.4f, 0.3f }));
}
void normalize_sum1_mixedSign() {
Column c { 1, 2, -4, -3 };
QCOMPARE(C::normalize(c, ColumnNormalization::Sum1),
Column({ 0.1f, 0.2f, -0.4f, -0.3f }));
}
void normalize_max1() {
Column c { 4, 3, 2, 1 };
QCOMPARE(C::normalize(c, ColumnNormalization::Max1),
Column({ 1.0f, 0.75f, 0.5f, 0.25f }));
}
void normalize_max1_mixedSign() {
Column c { -4, -3, 2, 1 };
QCOMPARE(C::normalize(c, ColumnNormalization::Max1),
Column({ -1.0f, -0.75f, 0.5f, 0.25f }));
}
void normalize_range01() {
Column c { 4, 3, 2, 1 };
QCOMPARE(C::normalize(c, ColumnNormalization::Range01),
Column({ 1.0f, 2.f/3.f, 1.f/3.f, 0.0f }));
}
void normalize_range01_mixedSign() {
Column c { -2, -3, 2, 1 };
QCOMPARE(C::normalize(c, ColumnNormalization::Range01),
Column({ 0.2f, 0.0f, 1.0f, 0.8f }));
}
void normalize_hybrid() {
// with max == 99, log10(max+1) == 2 so scale factor will be 2/99
Column c { 22, 44, 99, 66 };
QCOMPARE(C::normalize(c, ColumnNormalization::Hybrid),
Column({ 44.0f/99.0f, 88.0f/99.0f, 2.0f, 132.0f/99.0f }));
}
void normalize_hybrid_mixedSign() {
// with max == 99, log10(max+1) == 2 so scale factor will be 2/99
Column c { 22, 44, -99, -66 };
QCOMPARE(C::normalize(c, ColumnNormalization::Hybrid),
Column({ 44.0f/99.0f, 88.0f/99.0f, -2.0f, -132.0f/99.0f }));
}
void distribute_simple() {
Column in { 1, 2, 3 };
BinMapping binfory { 0.0f, 0.5f, 1.0f, 1.5f, 2.0f, 2.5f };
Column expected { 1, 1, 2, 2, 3, 3 };
Column actual(C::distribute(in, 6, binfory, 0, false));
report(actual);
QCOMPARE(actual, expected);
}
void distribute_simple_interpolated() {
Column in { 1, 2, 3 };
BinMapping binfory { 0.0f, 0.5f, 1.0f, 1.5f, 2.0f, 2.5f };
// There is a 0.5-bin offset from the distribution you might
// expect, because this corresponds visually to the way that
// bin values are duplicated upwards in simple_distribution.
// It means that switching between interpolated and
// non-interpolated views retains the visual position of each
// bin peak as somewhere in the middle of the scale area for
// that bin.
Column expected { 1, 1, 1.5f, 2, 2.5f, 3 };
Column actual(C::distribute(in, 6, binfory, 0, true));
report(actual);
QCOMPARE(actual, expected);
}
void distribute_nonlinear() {
Column in { 1, 2, 3 };
BinMapping binfory { 0.0f, 0.2f, 0.5f, 1.0f, 2.0f, 2.5f };
Column expected { 1, 1, 1, 2, 3, 3 };
Column actual(C::distribute(in, 6, binfory, 0, false));
report(actual);
QCOMPARE(actual, expected);
}
void distribute_nonlinear_interpolated() {
// See distribute_simple_interpolated
Column in { 1, 2, 3 };
BinMapping binfory { 0.0f, 0.2f, 0.5f, 1.0f, 2.0f, 2.5f };
Column expected { 1, 1, 1, 1.5, 2.5, 3 };
Column actual(C::distribute(in, 6, binfory, 0, true));
report(actual);
QCOMPARE(actual, expected);
}
void distribute_shrinking() {
Column in { 4, 1, 2, 3, 5, 6 };
BinMapping binfory { 0.0f, 2.0f, 4.0f };
Column expected { 4, 3, 6 };
Column actual(C::distribute(in, 3, binfory, 0, false));
report(actual);
QCOMPARE(actual, expected);
}
void distribute_shrinking_interpolated() {
// should be same as distribute_shrinking, we don't
// interpolate when resizing down
Column in { 4, 1, 2, 3, 5, 6 };
BinMapping binfory { 0.0f, 2.0f, 4.0f };
Column expected { 4, 3, 6 };
Column actual(C::distribute(in, 3, binfory, 0, true));
report(actual);
QCOMPARE(actual, expected);
}
void distribute_nonlinear_someshrinking_interpolated() {
// But we *should* interpolate, at least initially, if the
// mapping involves shrinking some bins but expanding others.
// In this case ColumnOp should spot that our bins have got
// closer together and stop interpolating after the first one.
// See distribute_simple_interpolated for note on 0.5 offset
Column in { 4, 1, 2, 3, 5, 6 };
BinMapping binfory { 1.0f, 3.0f, 4.0f, 4.5f };
Column expected { 2.5f, 3.0f, 5.0f, 6.0f };
Column actual(C::distribute(in, 4, binfory, 0, true));
report(actual);
QCOMPARE(actual, expected);
binfory = BinMapping { 0.5f, 1.0f, 2.0f, 5.0f };
expected = { 4.0f, 2.5f, 1.5f, 6.0f };
actual = (C::distribute(in, 4, binfory, 0, true));
report(actual);
QCOMPARE(actual, expected);
}
};
#endif
|