1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2006 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "FFTModel.h"
#include "DenseTimeValueModel.h"
#include "base/Profiler.h"
#include "base/Pitch.h"
#include "base/HitCount.h"
#include "base/Debug.h"
#include "base/MovingMedian.h"
#include "bqvec/VectorOpsComplex.h"
#include <algorithm>
#include <cassert>
#include <deque>
//#define DEBUG_FFT_MODEL 1
using namespace std;
namespace sv {
static thread_local unordered_map<int, shared_ptr<breakfastquay::FFT>> fftMap;
struct SavedFFTColumn {
const FFTModel *model; // requesting model (used for comparison only)
int n; // column number
doublecomplexvec_t col;
};
typedef std::vector<SavedFFTColumn> SmallCache;
static thread_local SmallCache smallCache;
static thread_local int smallCacheWriteIndex = 0;
static constexpr size_t smallCacheSize = 16;
static HitCount inSmallCache("FFTModel: Small FFT cache");
static HitCount inSourceCache("FFTModel: Source data cache");
FFTModel::FFTModel(ModelId modelId,
int channel,
WindowType windowType,
int windowSize,
int windowIncrement,
int fftSize) :
m_model(modelId),
m_sampleRate(0),
m_channel(channel),
m_windowType(windowType),
m_windowSize(windowSize),
m_windowIncrement(windowIncrement),
m_fftSize(fftSize),
m_windower(windowType, windowSize),
m_maximumFrequency(0.0)
{
if (m_windowSize > m_fftSize) {
SVCERR << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
<< ") may not exceed FFT size (" << m_fftSize << ")" << endl;
throw invalid_argument("FFTModel window size may not exceed FFT size");
}
auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
if (model) {
m_sampleRate = model->getSampleRate();
m_unit = model->getValueUnit();
connect(model.get(), SIGNAL(modelChanged(ModelId)),
this, SIGNAL(modelChanged(ModelId)));
connect(model.get(), SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)),
this, SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)));
} else {
m_error = QString("Model #%1 is not available").arg(m_model.untyped);
}
m_savedData.range = { 0, 0 };
}
FFTModel::~FFTModel()
{
clearCaches();
}
void
FFTModel::clearCaches()
{
// Avoid cache slots being wrongly reused by any future model
// created at the same address
for (auto &incache : smallCache) {
if (incache.model == this) {
incache.model = nullptr;
}
}
QMutexLocker locker(&m_mutex);
m_savedData.range = { 0, 0 };
}
bool
FFTModel::isOK() const
{
auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
if (!model) {
m_error = QString("Model #%1 is not available").arg(m_model.untyped);
return false;
}
if (!model->isOK()) {
m_error = QString("Model #%1 is not OK").arg(m_model.untyped);
return false;
}
return true;
}
int
FFTModel::getCompletion() const
{
int c = 100;
auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
if (model) {
if (model->isReady(&c)) return 100;
}
return c;
}
void
FFTModel::setMaximumFrequency(double freq)
{
m_maximumFrequency = freq;
// This call changes the column height, so cached values are no longer valid
clearCaches();
}
int
FFTModel::getWidth() const
{
auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
if (!model) return 0;
return int((model->getEndFrame() - model->getStartFrame())
/ m_windowIncrement) + 1;
}
int
FFTModel::getHeight() const
{
int height = m_fftSize / 2 + 1;
if (m_maximumFrequency != 0.0) {
int maxBin = int(ceil(m_maximumFrequency * m_fftSize) / m_sampleRate);
if (maxBin >= 0 && maxBin < height) {
return maxBin + 1;
}
}
return height;
}
QString
FFTModel::getBinName(int n) const
{
return tr("%1 Hz").arg(getBinValue(n));
}
float
FFTModel::getBinValue(int n) const
{
return float((m_sampleRate * n) / m_fftSize);
}
FFTModel::Column
FFTModel::getColumn(int x) const
{
Profiler profiler("FFTModel::getColumn");
auto cplx = getFFTColumn(x);
Column col;
col.reserve(cplx.size());
for (auto c: cplx) {
col.push_back(abs(c));
}
return col;
}
FFTModel::Column
FFTModel::getColumn(int x, int minbin, int nbins) const
{
Profiler profiler("FFTModel::getColumn (subset)");
auto cplx = getFFTColumn(x);
Column col;
col.reserve(nbins);
for (int i = 0; i < nbins; ++i) {
col.push_back(abs(cplx[minbin + i]));
}
return col;
}
FFTModel::Column
FFTModel::getColumnWithoutCache(int x, int minbin, int nbins) const
{
Profiler profiler("FFTModel::getColumnWithoutCache (subset)");
doublecomplexvec_t cplx;
getFFTColumnUncached(x, cplx);
Column col;
col.reserve(nbins);
for (int i = 0; i < nbins; ++i) {
col.push_back(abs(cplx[minbin + i]));
}
return col;
}
FFTModel::Column
FFTModel::getPhases(int x) const
{
Profiler profiler("FFTModel::getPhases");
auto cplx = getFFTColumn(x);
Column col;
col.reserve(cplx.size());
for (auto c: cplx) {
col.push_back(arg(c));
}
return col;
}
float
FFTModel::getMagnitudeAt(int x, int y) const
{
if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
return 0.f;
}
auto col = getFFTColumn(x);
return abs(col[y]);
}
float
FFTModel::getMaximumMagnitudeAt(int x) const
{
Column col(getColumn(x));
float max = 0.f;
int n = int(col.size());
for (int i = 0; i < n; ++i) {
if (col[i] > max) max = col[i];
}
return max;
}
float
FFTModel::getPhaseAt(int x, int y) const
{
if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
return arg(getFFTColumn(x)[y]);
}
void
FFTModel::getValuesAt(int x, int y, float &re, float &im) const
{
if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
re = 0.f;
im = 0.f;
return;
}
auto col = getFFTColumn(x);
re = col[y].real();
im = col[y].imag();
}
bool
FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
{
if (count == 0) {
count = getHeight() - minbin;
}
auto col = getFFTColumn(x);
for (int i = 0; i < count; ++i) {
values[i] = abs(col[minbin + i]);
}
return true;
}
bool
FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
{
if (count == 0) count = getHeight();
auto col = getFFTColumn(x);
for (int i = 0; i < count; ++i) {
values[i] = arg(col[minbin + i]);
}
return true;
}
bool
FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
{
if (count == 0) count = getHeight();
auto col = getFFTColumn(x);
for (int i = 0; i < count; ++i) {
reals[i] = col[minbin + i].real();
}
for (int i = 0; i < count; ++i) {
imags[i] = col[minbin + i].imag();
}
return true;
}
floatvec_t
FFTModel::getSourceSamples(int column) const
{
// m_fftSize may be greater than m_windowSize, but not the reverse
#ifdef DEBUG_FFT_MODEL
SVDEBUG << "getSourceSamples(" << column << ")" << endl;
#endif
auto range = getSourceSampleRange(column);
auto data = getSourceData(range);
int off = (m_fftSize - m_windowSize) / 2;
if (off == 0) {
return data;
} else {
vector<float> pad(off, 0.f);
floatvec_t padded;
padded.reserve(m_fftSize);
padded.insert(padded.end(), pad.begin(), pad.end());
padded.insert(padded.end(), data.begin(), data.end());
padded.insert(padded.end(), pad.begin(), pad.end());
return padded;
}
}
floatvec_t
FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
{
#ifdef DEBUG_FFT_MODEL
SVDEBUG << "getSourceData(" << range.first << "," << range.second
<< "): saved range is (" << m_savedData.range.first
<< "," << m_savedData.range.second << ")" << endl;
#endif
QMutexLocker locker(&m_mutex);
if (m_savedData.range == range) {
inSourceCache.hit();
#ifdef DEBUG_FFT_MODEL
SVDEBUG << "getSourceData(" << range.first << "," << range.second
<< "): source cache hit" << endl;
#endif
return m_savedData.data;
}
Profiler profiler("FFTModel::getSourceData (cache miss)");
if (range.first < m_savedData.range.second &&
range.first >= m_savedData.range.first &&
range.second > m_savedData.range.second) {
inSourceCache.partial();
#ifdef DEBUG_FFT_MODEL
SVDEBUG << "getSourceData(" << range.first << "," << range.second
<< "): source cache partial hit" << endl;
#endif
sv_frame_t discard = range.first - m_savedData.range.first;
floatvec_t data;
data.reserve(range.second - range.first);
data.insert(data.end(),
m_savedData.data.begin() + discard,
m_savedData.data.end());
floatvec_t rest = getSourceDataUncached
({ m_savedData.range.second, range.second });
data.insert(data.end(), rest.begin(), rest.end());
m_savedData = { range, data };
return data;
} else {
inSourceCache.miss();
#ifdef DEBUG_FFT_MODEL
SVDEBUG << "getSourceData(" << range.first << "," << range.second
<< "): source cache miss" << endl;
#endif
auto data = getSourceDataUncached(range);
m_savedData = { range, data };
return data;
}
}
floatvec_t
FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
{
Profiler profiler("FFTModel::getSourceDataUncached");
auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
if (!model) return {};
decltype(range.first) pfx = 0;
if (range.first < 0) {
pfx = -range.first;
range = { 0, range.second };
}
auto data = model->getData(m_channel,
range.first,
range.second - range.first);
#ifdef DEBUG_FFT_MODEL
if (data.empty()) {
SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
<< range.second << ") (model end frame "
<< model->getEndFrame() << ")" << endl;
}
#endif
// don't return a partial frame
data.resize(range.second - range.first, 0.f);
if (pfx > 0) {
vector<float> pad(pfx, 0.f);
data.insert(data.begin(), pad.begin(), pad.end());
}
if (m_channel == -1) {
int channels = model->getChannelCount();
if (channels > 1) {
int n = int(data.size());
float factor = 1.f / float(channels);
// use mean instead of sum for fft model input
for (int i = 0; i < n; ++i) {
data[i] *= factor;
}
}
}
return data;
}
const doublecomplexvec_t &
FFTModel::getFFTColumn(int n) const
{
Profiler profiler("FFTModel::getFFTColumn");
// The small cache is for cases where values are looked up
// individually, and for e.g. peak-frequency spectrograms where
// values from two consecutive columns are needed at once. This
// cache is seldom used when e.g. scrolling through a magnitude
// spectrogram, but gets a lot of hits with a peak-frequency
// spectrogram or spectrum.
// Note that the small cache is thread-local, so no mutex
for (int i = 0; in_range_for(smallCache, i); ++i) {
const auto &incache = smallCache.at(i);
if (incache.model == this && incache.n == n) {
inSmallCache.hit();
// cerr << "*HIT* at " << i << " with model = " << this << " and n = " << n << endl;
return incache.col;
}
}
inSmallCache.miss();
while (smallCache.size() < smallCacheSize) {
smallCache.push_back({ nullptr, -1, doublecomplexvec_t() });
}
int ix = smallCacheWriteIndex;
doublecomplexvec_t &col = smallCache[ix].col;
getFFTColumnUncached(n, col);
smallCache[ix].model = this;
smallCache[ix].n = n;
// cerr << "wrote at " << ix << " with model = " << this << " and n = " << n << endl;
smallCacheWriteIndex = (ix + 1) % smallCacheSize;
// cerr << "smallCacheWriteIndex is now " << smallCacheWriteIndex << endl;
return col;
}
void
FFTModel::getFFTColumnUncached(int n, doublecomplexvec_t &col) const
{
// Profiler profiler("FFTModel::getFFTColumnUncached");
if (fftMap.find(m_fftSize) == fftMap.end()) {
fftMap[m_fftSize] = make_shared<breakfastquay::FFT>(m_fftSize);
fftMap[m_fftSize]->initDouble();
}
auto fsamples = getSourceSamples(n);
// Ensure that windowing and FFT happen in double precision
vector<double> samples(m_fftSize);
breakfastquay::v_convert(samples.data(), fsamples.data(), m_fftSize);
m_windower.cut(samples.data() + (m_fftSize - m_windowSize) / 2);
breakfastquay::v_fftshift(samples.data(), m_fftSize);
col.resize(m_fftSize/2 + 1);
// thread-local FFT (breakfastquay::FFT is not thread-safe)
fftMap[m_fftSize]->forwardInterleaved
(samples.data(), reinterpret_cast<double *>(col.data()));
// keep only the number of elements we need
col.resize(getHeight());
#ifdef DEBUG_FFT_MODEL
{
vector<double> mags(getHeight(), 0.0);
breakfastquay::v_cartesian_interleaved_to_magnitudes
((double *)mags.data(),
(const double *)col.data(),
getHeight());
SVDEBUG << "FFTModel::getFFTColumn(" << n << "): fft size " << m_fftSize
<< ", height " << getHeight() << ", mag range "
<< breakfastquay::v_min(mags.data(), mags.size()) << " to "
<< breakfastquay::v_max(mags.data(), mags.size()) << endl;
}
#endif
}
bool
FFTModel::estimateStableFrequency(int x, int y, double &frequency)
{
if (!isOK()) return false;
frequency = double(y * getSampleRate()) / m_fftSize;
if (x+1 >= getWidth()) return false;
// At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
// At hopsize h and sample rate sr, one hop happens in h/sr sec.
// At window size w, for bin b, f is b*sr/w.
// thus 2pi phase shift happens in w/(b*sr) sec.
// We need to know what phase shift we expect from h/sr sec.
// -> 2pi * ((h/sr) / (w/(b*sr)))
// = 2pi * ((h * b * sr) / (w * sr))
// = 2pi * (h * b) / w.
double oldPhase = getPhaseAt(x, y);
double newPhase = getPhaseAt(x+1, y);
int incr = getResolution();
double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
double phaseError = princarg(newPhase - expectedPhase);
// The new frequency estimate based on the phase error resulting
// from assuming the "native" frequency of this bin
frequency =
(getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
(2.0 * M_PI * incr);
return true;
}
FFTModel::PeakLocations
FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
{
Profiler profiler("FFTModel::getPeaks");
return getPeaksAndColumn(type, x, ymin, ymax, nullptr);
}
FFTModel::PeakLocations
FFTModel::getPeaksAndColumn(PeakPickType type, int x, int ymin, int ymax,
doublecomplexvec_t *colReturn) const
{
FFTModel::PeakLocations peaks;
if (!isOK()) {
if (colReturn) {
*colReturn = {};
}
return peaks;
}
if (ymax == 0 || ymax > getHeight() - 1) {
ymax = getHeight() - 1;
}
doublecomplexvec_t col = getFFTColumn(x);
if (colReturn) {
*colReturn = col;
}
if (type == AllPeaks) {
int minbin = ymin;
if (minbin > 0) minbin = minbin - 1;
int maxbin = ymax;
if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
const int n = maxbin - minbin + 1;
Column values;
values.reserve(n);
for (int i = 0; i < n; ++i) {
values.push_back(abs(col[minbin + i]));
}
for (int bin = ymin; bin <= ymax; ++bin) {
if (bin == minbin || bin == maxbin - 1) continue;
if (values[bin - minbin] > values[bin - minbin - 1] &&
values[bin - minbin] > values[bin - minbin + 1]) {
peaks.push_back(bin);
}
}
return peaks;
}
int nv = int(col.size());
Column values;
values.reserve(nv);
for (int i = 0; i < nv; ++i) {
values.push_back(abs(col[i]));
}
float mean = 0.f;
for (int i = 0; i < nv; ++i) mean += values[i];
if (nv > 0) mean = mean / float(values.size());
// For peak picking we use a moving median window, picking the
// highest value within each continuous region of values that
// exceed the median. For pitch adaptivity, we adjust the window
// size to a roughly constant pitch range (about four tones).
sv_samplerate_t sampleRate = getSampleRate();
vector<int> inrange;
double dist = 0.5;
int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
int halfWin = medianWinSize/2;
MovingMedian<float> window(medianWinSize);
int binmin;
if (ymin > halfWin) binmin = ymin - halfWin;
else binmin = 0;
int binmax;
if (ymax + halfWin < nv) binmax = ymax + halfWin;
else binmax = nv - 1;
int prevcentre = 0;
for (int bin = binmin; bin <= binmax; ++bin) {
float value = values[bin];
// so-called median will actually be the dist*100'th percentile
medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
halfWin = medianWinSize/2;
int actualSize = std::min(medianWinSize, bin - binmin + 1);
window.resize(actualSize);
window.setPercentile(dist * 100.0);
window.push(value);
if (type == MajorPitchAdaptivePeaks) {
if (ymax + halfWin < nv) binmax = ymax + halfWin;
else binmax = nv - 1;
}
float median = window.get();
int centrebin = 0;
if (bin > actualSize/2) centrebin = bin - actualSize/2;
while (centrebin > prevcentre || bin == binmin) {
if (centrebin > prevcentre) ++prevcentre;
float centre = values[prevcentre];
if (centre > median) {
inrange.push_back(centrebin);
}
if (centre <= median || centrebin+1 == nv) {
if (!inrange.empty()) {
int peakbin = 0;
float peakval = 0.f;
for (int i = 0; i < (int)inrange.size(); ++i) {
if (i == 0 || values[inrange[i]] > peakval) {
peakval = values[inrange[i]];
peakbin = inrange[i];
}
}
inrange.clear();
if (peakbin >= ymin && peakbin <= ymax) {
peaks.push_back(peakbin);
}
}
}
if (bin == binmin) break;
}
}
return peaks;
}
int
FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
int bin, double &dist) const
{
dist = 0.5; // dist is percentile / 100.0
if (type == MajorPeaks) return 10;
if (bin == 0) return 3;
double binfreq = (sampleRate * bin) / m_fftSize;
double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
int medianWinSize = hibin - bin;
if (medianWinSize < 3) {
medianWinSize = 3;
}
// We want to avoid the median window size changing too often, as
// it requires a reallocation. So snap to a nearby round number.
if (medianWinSize > 20) {
medianWinSize = (1 + medianWinSize / 10) * 10;
}
if (medianWinSize > 200) {
medianWinSize = (1 + medianWinSize / 100) * 100;
}
if (medianWinSize > 2000) {
medianWinSize = (1 + medianWinSize / 1000) * 1000;
}
if (medianWinSize > 20000) {
medianWinSize = 20000;
}
if (medianWinSize < 100) {
dist = 1.0 - (4.0 / medianWinSize);
} else {
dist = 1.0 - (8.0 / medianWinSize);
}
if (dist < 0.5) dist = 0.5;
return medianWinSize;
}
FFTModel::Peaks
FFTModel::getPeakFrequencies(PeakPickType type, int x,
int ymin, int ymax) const
{
Profiler profiler("FFTModel::getPeakFrequencies");
Peaks peaks;
if (!isOK() || x >= getWidth()) {
return peaks;
}
doublecomplexvec_t col;
PeakLocations locations = getPeaksAndColumn(type, x, ymin, ymax, &col);
peaks.reserve(locations.size());
doublecomplexvec_t nextCol = getFFTColumn(x+1);
sv_samplerate_t sampleRate = getSampleRate();
int incr = getResolution();
// This duplicates some of the work of estimateStableFrequency to
// allow us to retrieve the phases in two separate vertical
// columns, instead of jumping back and forth between columns x and
// x+1, which may be significantly slower if re-seeking is needed
for (auto location : locations) {
double oldPhase = arg(col[location]);
double newPhase = arg(nextCol[location]);
double expectedPhase =
oldPhase + (2.0 * M_PI * location * incr) / m_fftSize;
double phaseError = princarg(newPhase - expectedPhase);
double frequency =
(sampleRate * (expectedPhase + phaseError - oldPhase))
/ (2 * M_PI * incr);
peaks.push_back({ location, frequency });
}
return peaks;
}
} // end namespace sv
|