1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2006 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef FFT_MODEL_H
#define FFT_MODEL_H
#include "DenseThreeDimensionalModel.h"
#include "DenseTimeValueModel.h"
#include "base/Window.h"
#include <bqfft/FFT.h>
#include <bqvec/Allocators.h>
#include <set>
#include <vector>
#include <thread>
#include <complex>
namespace sv {
/**
* An implementation of DenseThreeDimensionalModel that makes FFT data
* derived from a DenseTimeValueModel available as a generic data
* grid.
*/
class FFTModel : public DenseThreeDimensionalModel
{
Q_OBJECT
// NB like all models this has to be thread-safe against multiple
// threads querying data at once
public:
/**
* Construct an FFT model derived from the given
* DenseTimeValueModel, with the given window parameters and FFT
* size (which may exceed the window size, for zero-padded FFTs).
*
* If the model has multiple channels use only the given channel,
* unless the channel is -1 in which case merge all available
* channels.
*/
FFTModel(ModelId model, // a DenseTimeValueModel
int channel,
WindowType windowType,
int windowSize,
int windowIncrement,
int fftSize);
~FFTModel();
// DenseThreeDimensionalModel and Model methods:
//
bool isOK() const override;
int getCompletion() const override;
int getWidth() const override;
int getHeight() const override;
float getValueAt(int x, int y) const override {
return getMagnitudeAt(x, y);
}
QString getValueUnit() const override {
return m_unit;
}
sv_frame_t getStartFrame() const override {
return 0;
}
sv_frame_t getTrueEndFrame() const override {
return sv_frame_t(getWidth()) * getResolution() + getResolution();
}
sv_samplerate_t getSampleRate() const override {
return m_sampleRate;
}
int getResolution() const override {
return m_windowIncrement;
}
float getMinimumLevel() const override { return 0.f; } // Can't provide
float getMaximumLevel() const override { return 1.f; } // Can't provide
Column getColumn(int x) const override; // magnitudes
Column getColumn(int x, int minbin, int nbins) const override; // magnitudes
Column getColumnWithoutCache(int x, int minbin, int nbins) const; // magnitudes
bool hasBinValues() const override {
return true;
}
QString getBinValueUnit() const override {
return "Hz";
}
bool shouldUseLogValueScale() const override {
return true;
}
float getBinValue(int n) const override;
QString getBinName(int n) const override;
QVector<QString>
getStringExportHeaders(DataExportOptions) const override {
return {};
}
QVector<QVector<QString>>
toStringExportRows(DataExportOptions, sv_frame_t, sv_frame_t) const override {
return {};
}
// FFTModel methods:
//
QString getError() const { return m_error; }
int getChannel() const { return m_channel; }
WindowType getWindowType() const { return m_windowType; }
int getWindowSize() const { return m_windowSize; }
int getWindowIncrement() const { return m_windowIncrement; }
int getFFTSize() const { return m_fftSize; }
void setMaximumFrequency(double freq);
double getMaximumFrequency() const { return m_maximumFrequency; }
//!!! review which of these are ever actually called
float getMagnitudeAt(int x, int y) const;
float getMaximumMagnitudeAt(int x) const;
Column getPhases(int x) const;
float getPhaseAt(int x, int y) const;
void getValuesAt(int x, int y, float &real, float &imaginary) const;
bool getMagnitudesAt(int x, float *values, int minbin = 0, int count = 0) const;
bool getPhasesAt(int x, float *values, int minbin = 0, int count = 0) const;
bool getValuesAt(int x, float *reals, float *imaginaries, int minbin = 0, int count = 0) const;
/**
* Calculate an estimated frequency for a stable signal in this
* bin, using phase unwrapping. This will be completely wrong if
* the signal is not stable here.
*/
virtual bool estimateStableFrequency(int x, int y, double &frequency);
enum PeakPickType
{
AllPeaks, /// Any bin exceeding its immediate neighbours
MajorPeaks, /// Peaks picked using sliding median window
MajorPitchAdaptivePeaks /// Bigger window for higher frequencies
};
typedef std::vector<int> PeakLocations; // bin (in order)
typedef std::vector<std::pair<int, double>> Peaks; // bin, freq (in bin order)
/**
* Return locations of peak bins in the range [ymin,ymax]. If
* ymax is zero, getHeight()-1 will be used.
*/
virtual PeakLocations getPeaks(PeakPickType type, int x,
int ymin = 0, int ymax = 0) const;
/**
* Return locations and estimated stable frequencies of peak bins.
*/
virtual Peaks getPeakFrequencies(PeakPickType type, int x,
int ymin = 0, int ymax = 0) const;
QString getTypeName() const override { return tr("FFT"); }
private:
FFTModel(const FFTModel &) =delete;
FFTModel &operator=(const FFTModel &) =delete;
const ModelId m_model; // a DenseTimeValueModel
sv_samplerate_t m_sampleRate;
int m_channel;
QString m_unit;
WindowType m_windowType;
int m_windowSize;
int m_windowIncrement;
int m_fftSize;
Window<double> m_windower;
double m_maximumFrequency;
mutable QString m_error;
int getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
int bin, double &dist) const;
std::pair<sv_frame_t, sv_frame_t> getSourceSampleRange(int column) const {
sv_frame_t startFrame = m_windowIncrement * sv_frame_t(column);
sv_frame_t endFrame = startFrame + m_windowSize;
// Cols are centred on the audio sample (e.g. col 0 is centred at sample 0)
startFrame -= m_windowSize / 2;
endFrame -= m_windowSize / 2;
return { startFrame, endFrame };
}
const doublecomplexvec_t &getFFTColumn(int column) const;
void getFFTColumnUncached(int column, doublecomplexvec_t &) const;
floatvec_t getSourceSamples(int column) const;
floatvec_t getSourceData(std::pair<sv_frame_t, sv_frame_t>) const;
floatvec_t getSourceDataUncached(std::pair<sv_frame_t, sv_frame_t>) const;
PeakLocations getPeaksAndColumn(PeakPickType type, int x,
int ymin, int ymax,
doublecomplexvec_t *column) const;
struct SavedSourceData {
std::pair<sv_frame_t, sv_frame_t> range;
floatvec_t data;
};
mutable SavedSourceData m_savedData;
void clearCaches();
};
} // end namespace sv
#endif
|