1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Sonic Visualiser
An audio file viewer and annotation editor.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2006-2016 Chris Cannam and QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "ColourScale.h"
#include "base/AudioLevel.h"
#include "base/LogRange.h"
#include <cmath>
#include <iostream>
using namespace std;
namespace sv {
int ColourScale::m_maxPixel = 255;
ColourScale::ColourScale(Parameters parameters) :
m_params(parameters),
m_mapper(m_params.colourMap, m_params.inverted, 1.f, double(m_maxPixel))
{
if (m_params.minValue >= m_params.maxValue) {
SVCERR << "ERROR: ColourScale::ColourScale: minValue = "
<< m_params.minValue << ", maxValue = " << m_params.maxValue << endl;
throw std::logic_error("maxValue must be greater than minValue");
}
m_mappedMin = m_params.minValue;
m_mappedMax = m_params.maxValue;
if (m_mappedMin < m_params.threshold) {
m_mappedMin = m_params.threshold;
}
if (m_params.scaleType == ColourScaleType::Log) {
// When used in e.g. spectrogram, we have a range with a min
// value of zero. The LogRange converts that to a threshold
// value of -10, so for a range of e.g. (0,1) we end up with
// (-10,0) as the mapped range.
//
// But in other contexts we could end up with a mapped range
// much larger than that if we have a small non-zero minimum
// value (less than 1e-10), or a particularly large
// maximum. That's unlikely to give us good results, so let's
// insist that the mapped log range has no more than 10
// difference between min and max, to match the behaviour when
// min == 0 at the input.
//
double threshold = -10.0;
LogRange::mapRange(m_mappedMin, m_mappedMax, threshold);
if (m_mappedMin < m_mappedMax + threshold) {
m_mappedMin = m_mappedMax + threshold;
}
} else if (m_params.scaleType == ColourScaleType::PlusMinusOne) {
m_mappedMin = -1.0;
m_mappedMax = 1.0;
} else if (m_params.scaleType == ColourScaleType::Absolute) {
m_mappedMin = fabs(m_mappedMin);
m_mappedMax = fabs(m_mappedMax);
if (m_mappedMin >= m_mappedMax) {
std::swap(m_mappedMin, m_mappedMax);
}
}
if (m_mappedMin >= m_mappedMax) {
SVCERR << "ERROR: ColourScale::ColourScale: minValue = " << m_params.minValue
<< ", maxValue = " << m_params.maxValue
<< ", threshold = " << m_params.threshold
<< ", scale = " << int(m_params.scaleType)
<< " resulting in mapped minValue = " << m_mappedMin
<< ", mapped maxValue = " << m_mappedMax << endl;
throw std::logic_error("maxValue must be greater than minValue [after mapping]");
}
}
ColourScale::~ColourScale()
{
}
ColourScaleType
ColourScale::getScale() const
{
return m_params.scaleType;
}
int
ColourScale::getPixelGeneral(double value) const
{
double maxPixF = m_maxPixel;
if (m_params.scaleType == ColourScaleType::Phase) {
double half = (maxPixF - 1.f) / 2.f;
int pixel = 1 + int((value * half) / M_PI + half);
// SVCERR << "phase = " << value << " pixel = " << pixel << endl;
return pixel;
}
value *= m_params.gain;
if (value < m_params.threshold) return 0;
double mapped = value;
if (m_params.scaleType == ColourScaleType::Log) {
mapped = LogRange::map(value);
} else if (m_params.scaleType == ColourScaleType::PlusMinusOne) {
if (mapped < -1.f) mapped = -1.f;
if (mapped > 1.f) mapped = 1.f;
} else if (m_params.scaleType == ColourScaleType::Absolute) {
if (mapped < 0.f) mapped = -mapped;
}
mapped *= m_params.multiple;
if (mapped < m_mappedMin) {
mapped = m_mappedMin;
}
if (mapped > m_mappedMax) {
mapped = m_mappedMax;
}
double proportion = (mapped - m_mappedMin) / (m_mappedMax - m_mappedMin);
int pixel = 0;
if (m_params.scaleType == ColourScaleType::Meter) {
pixel = AudioLevel::voltage_to_fader(proportion, m_maxPixel-1,
AudioLevel::Scale::Preview) + 1;
} else {
pixel = int(proportion * maxPixF) + 1;
}
if (pixel < 0) {
pixel = 0;
}
if (pixel > m_maxPixel) {
pixel = m_maxPixel;
}
return pixel;
}
QColor
ColourScale::getColourForPixel(int pixel, int rotation) const
{
if (pixel < 0) {
pixel = 0;
}
if (pixel > m_maxPixel) {
pixel = m_maxPixel;
}
if (pixel == 0) {
if (m_mapper.hasLightBackground()) {
return Qt::white;
} else {
return Qt::black;
}
} else {
int target = int(pixel) + rotation;
while (target < 1) target += m_maxPixel;
while (target > m_maxPixel) target -= m_maxPixel;
return m_mapper.map(double(target));
}
}
} // end namespace sv
|