1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
#include <catch.hpp>
#include <numeric>
#include <random>
#include <utility>
#include "sopt/maths.h"
#include "sopt/relative_variation.h"
#include "sopt/sampling.h"
#include "sopt/types.h"
TEST_CASE("Projector on positive quadrant", "[utility][project]") {
using namespace sopt;
SECTION("Real matrix") {
Image<> input = Image<>::Ones(5, 5) + Image<>::Random(5, 5) * 0.55;
input(1, 1) *= -1;
input(3, 2) *= -1;
auto const expr = positive_quadrant(input);
CAPTURE(input);
CAPTURE(expr);
CHECK(expr(1, 1) == Approx(0));
CHECK(expr(3, 2) == Approx(0));
auto value = expr.eval();
CHECK(value(1, 1) == Approx(0));
CHECK(value(3, 2) == Approx(0));
value(1, 1) = input(1, 1);
value(3, 2) = input(3, 2);
CHECK(value.isApprox(input));
}
SECTION("Complex matrix") {
Image<t_complex> input = Image<t_complex>::Ones(5, 5) + Image<t_complex>::Random(5, 5) * 0.55;
input.real()(1, 1) *= -1;
input.real()(3, 2) *= -1;
auto const expr = positive_quadrant(input);
CAPTURE(input);
CAPTURE(expr);
CHECK(expr.imag().isApprox(Image<>::Zero(5, 5)));
auto value = expr.eval();
CHECK(value.real()(1, 1) == Approx(0));
CHECK(value.real()(3, 2) == Approx(0));
value(1, 1) = input.real()(1, 1);
value(3, 2) = input.real()(3, 2);
CHECK(value.real().isApprox(input.real()));
CHECK(value.imag().isApprox(0e0 * input.real()));
}
}
TEST_CASE("Weighted l1 norm", "[utility][l1]") {
sopt::Array<> weight(4);
weight << 1, 2, 3, 4;
SECTION("Real valued") {
sopt::Array<> input(4);
input << 5, -6, 7, -8;
CHECK(sopt::l1_norm(input, weight) == Approx(5 + 12 + 21 + 32));
}
SECTION("Complex valued") {
sopt::t_complex const i(0, 1);
sopt::Array<sopt::t_complex> input(4);
input << 5. + 5. * i, 6. + 6. * i, 7. + 7. * i, 8. + 8. * i;
CHECK(sopt::l1_norm(input, weight) == Approx(std::sqrt(2) * (5 + 12 + 21 + 32)));
}
}
TEST_CASE("Soft threshhold", "[utility][threshhold]") {
sopt::Array<> input(6);
input << 1e1, 2e1, 3e1, 4e1, 1e4, 2e4;
SECTION("Single-valued threshhold") {
// check thresshold
CHECK(sopt::soft_threshhold(input, 1.1e1)(0) == Approx(0));
CHECK(not(sopt::soft_threshhold(input, 1.1e1)(1) == Approx(0)));
// check linearity
auto a = sopt::soft_threshhold(input, 9e0)(0);
auto b = sopt::soft_threshhold(input, 4.5e0)(0);
auto c = sopt::soft_threshhold(input, 2.25e0)(0);
CAPTURE(b - a);
CAPTURE(c - b);
CHECK((b - a) == Approx(2 * (c - b)));
}
SECTION("Multi-values threshhold") {
using namespace sopt;
Array<> threshhold(6);
input[2] *= -1;
threshhold << 1.1e1, 1.1e1, 1e0, 4.5, 2.25, 2.26;
SECTION("Real input") {
Array<> const actual = soft_threshhold(input, threshhold);
CHECK(actual(0) == 0e0);
CHECK(actual(1) == input(1) - threshhold(1));
CHECK(actual(2) == input(2) + threshhold(2));
CHECK(actual(3) == input(3) - threshhold(3));
CHECK_THROWS_AS(soft_threshhold(input, threshhold.head(2)), sopt::Exception);
}
SECTION("Complex input") {
Array<t_complex> const actual = soft_threshhold(input.cast<t_complex>(), threshhold);
CHECK(actual(0) == 0e0);
CHECK(actual(1) == input(1) - threshhold(1));
CHECK(actual(2) == input(2) + threshhold(2));
CHECK(actual(3) == input(3) - threshhold(3));
CHECK_THROWS_AS(soft_threshhold(input, threshhold.head(2)), sopt::Exception);
}
}
}
TEST_CASE("Sampling", "[utility][sampling]") {
typedef sopt::Vector<int> t_Vector;
t_Vector const input = t_Vector::Random(12);
sopt::Sampling const sampling(12, {1, 3, 6, 5});
t_Vector down = t_Vector::Zero(4);
sampling(down, input);
CHECK(down.size() == 4);
CHECK(down(0) == input(1));
CHECK(down(1) == input(3));
CHECK(down(2) == input(6));
CHECK(down(3) == input(5));
t_Vector up = t_Vector::Zero(input.size());
sampling.adjoint(up, down);
CHECK(up(1) == input(1));
CHECK(up(3) == input(3));
CHECK(up(6) == input(6));
CHECK(up(5) == input(5));
up(1) = 0;
up(3) = 0;
up(6) = 0;
up(5) = 0;
CHECK(up == t_Vector::Zero(up.size()));
}
TEST_CASE("Relative variation", "[utility][convergence]") {
sopt::RelativeVariation<double> relvar(1e-8);
sopt::Array<> input = sopt::Array<>::Random(6);
CHECK(not relvar(input));
CHECK(relvar(input));
CHECK(relvar(input + relvar.epsilon() * 0.5 / 6. * sopt::Array<>::Random(6)));
CHECK(not relvar(input + relvar.epsilon() * 1.1 * sopt::Array<>::Ones(6)));
}
TEST_CASE("Standard deviation", "[utility]") {
sopt::Array<sopt::t_complex> input = sopt::Array<sopt::t_complex>::Random(6) + 1e0;
sopt::t_complex mean = input.mean();
sopt::t_real stddev = 0e0;
for(sopt::Vector<>::Index i(0); i < input.size(); ++i)
stddev += std::real(std::conj(input(i) - mean) * (input(i) - mean));
stddev = std::sqrt(stddev) / std::sqrt(sopt::t_real(input.size()));
CHECK(std::abs(sopt::standard_deviation(input) - stddev) < 1e-8);
CHECK(std::abs(sopt::standard_deviation(input.matrix()) - stddev) < 1e-8);
}
// Checks type traits work
static_assert(not sopt::details::HasValueType<double>::value, "");
static_assert(not sopt::details::HasValueType<std::pair<double, int>>::value, "");
static_assert(sopt::details::HasValueType<std::complex<double>>::value, "");
static_assert(sopt::details::HasValueType<sopt::Image<sopt::t_complex>::Scalar>::value, "");
static_assert(std::is_same<sopt::real_type<sopt::t_real>::type, sopt::t_real>::value, "");
static_assert(std::is_same<sopt::real_type<sopt::t_complex>::type, sopt::t_real>::value, "");
static_assert(sopt::is_complex<std::complex<double>>::value, "Testing is_complex");
static_assert(sopt::is_complex<std::complex<int>>::value, "Testing is_complex");
static_assert(not sopt::is_complex<double>::value, "Testing is_complex");
static_assert(not sopt::is_complex<sopt::Vector<double>>::value, "Testing is_complex");
static_assert(not sopt::is_complex<sopt::Vector<std::complex<int>>>::value, "Testing is_complex");
|