1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#include <catch.hpp>
#include <numeric>
#include <random>
#include <utility>
#include "sopt/l1_proximal.h"
#include "sopt/proximal.h"
#include "sopt/types.h"
template <class T> sopt::Matrix<T> concatenated_permutations(sopt::t_uint i, sopt::t_uint j) {
extern std::unique_ptr<std::mt19937_64> mersenne;
std::vector<size_t> cols(j);
std::iota(cols.begin(), cols.end(), 0);
std::shuffle(cols.begin(), cols.end(), *mersenne);
assert(j % i == 0);
auto const N = j / i;
auto const elem = 1e0 / std::sqrt(static_cast<typename sopt::real_type<T>::type>(N));
sopt::Matrix<T> result = sopt::Matrix<T>::Zero(i, cols.size());
for(typename sopt::Matrix<T>::Index k(0); k < result.cols(); ++k)
result(cols[k] / N, k) = elem;
return result;
}
TEST_CASE("L2Ball", "[proximal]") {
using namespace sopt;
proximal::L2Ball<t_real> ball(0.5);
Vector<t_real> out;
Vector<t_real> x(5);
x << 1, 2, 3, 4, 5;
out = ball(0, x);
CHECK(x.isApprox(out / 0.5 * x.stableNorm()));
ball.epsilon(x.stableNorm() * 1.001);
out = ball(0, x);
CHECK(x.isApprox(out));
}
TEST_CASE("WeightedL2Ball", "[proximal]") {
using namespace sopt;
Vector<t_real> const weights = 0.01 * Vector<t_real>::Random(5).array() + 1e0;
Vector<t_real> x(5);
x << 1, 2, 3, 4, 5;
proximal::WeightedL2Ball<t_real> wball(0.5, weights);
proximal::L2Ball<t_real> ball(0.5);
Vector<t_real> const expected
= ball((x.array() * weights.array()).matrix()).array() / weights.array();
Vector<t_real> const actual = wball(x);
CHECK(actual.isApprox(expected));
wball.epsilon((x.array() * weights.array()).matrix().stableNorm() * 1.001);
CHECK(x.isApprox(wball(x)));
}
TEST_CASE("Euclidian norm", "[proximal]") {
using namespace sopt;
proximal::EuclidianNorm eucl;
Vector<t_real> out(5);
Vector<t_real> x(5);
x << 1, 2, 3, 4, 5;
eucl(out, x.stableNorm() * 1.001, x);
CHECK(out.isApprox(Vector<t_real>::Zero(x.size())));
out = eucl(0.1, x);
CHECK(out.isApprox(x * (1e0 - 0.1 / x.stableNorm())));
}
TEST_CASE("Translation", "[proximal]") {
using namespace sopt;
Vector<t_real> out(5);
Vector<t_real> x(5);
x << 1, 2, 3, 4, 5;
proximal::L2Ball<t_real> ball(5000);
// Pass in a reference, so we can modify ball.epsilon later in the test.
auto const translated = proximal::translate(std::ref(ball), -x * 0.5);
translated(out, 0, x);
CHECK(out.isApprox(x));
ball.epsilon(0.125);
out = translated(0, x);
Vector<t_real> expected = ball(1, x * 0.5) + x * 0.5;
CHECK(out.isApprox(expected));
}
TEST_CASE("Tight-Frame L1 proximal", "[l1][proximal]") {
using namespace sopt;
auto l1 = proximal::L1TightFrame<t_complex>();
auto check_is_minimum = [&l1](Vector<t_complex> const &x, t_real gamma = 1e0) {
typedef t_complex Scalar;
Vector<t_complex> const p = l1(gamma, x);
auto const mini = l1.objective(x, p, gamma);
auto const eps = 1e-4;
for(Vector<t_complex>::Index i(0); i < p.size(); ++i) {
for(auto const dir : {Scalar(eps, 0), Scalar(0, eps), Scalar(-eps, 0), Scalar(0, -eps)}) {
Vector<t_complex> p_plus = p;
p_plus[i] += dir;
CHECK(l1.objective(x, p_plus, gamma) >= mini);
}
}
};
Vector<t_complex> const input = Vector<t_complex>::Random(8);
// no weights
SECTION("Scalar weights") {
CHECK(l1(1, input).isApprox(proximal::l1_norm(1, input)));
CHECK(l1(0.3, input).isApprox(proximal::l1_norm(0.3, input)));
check_is_minimum(input, 0.664);
}
// with weights == 1
SECTION("vector weights") {
l1.weights(Vector<t_real>::Ones(input.size()));
CHECK(l1(1, input).isApprox(proximal::l1_norm(1, input)));
CHECK(l1(0.2, input).isApprox(proximal::l1_norm(0.2, input)));
check_is_minimum(input, 0.664);
}
SECTION("vector weights with random values") {
l1.weights(Vector<t_real>::Random(input.size()).array().abs().matrix());
check_is_minimum(input, 0.235);
}
SECTION("Psi is a concatenation of permutations") {
auto const psi = concatenated_permutations<t_complex>(input.size(), input.size() * 10);
l1.Psi(psi).weights(1e0);
check_is_minimum(input, 0.235);
}
SECTION("Weights cannot be negative") {
CHECK_THROWS_AS(l1.weights(-1e0), Exception);
Vector<t_real> weights = Vector<t_real>::Random(5).array().abs().matrix();
weights[2] = -1;
CHECK_THROWS_AS(l1.weights(weights), Exception);
}
}
TEST_CASE("L1 proximal utilities", "[l1][utilities]") {
using namespace sopt;
typedef t_complex Scalar;
SECTION("Mixing") {
auto const input = Vector<Scalar>::Random(10).eval();
Vector<Scalar> output;
SECTION("No Mixing") {
proximal::L1<Scalar>::NoMixing()(output, 2.1 * input, 0);
CHECK(output.isApprox(2.1 * input));
proximal::L1<Scalar>::NoMixing()(output, 4.1 * input, 10);
CHECK(output.isApprox(4.1 * input));
}
SECTION("Fista Mixing") {
proximal::L1<Scalar>::FistaMixing fista;
// step zero: no mixing yet
fista(output, 2.1 * input, 0);
CHECK(output.isApprox(2.1 * input));
// step one: first mixing
fista(output, 3.1 * input, 1);
auto const alpha = (fista.next(1) - 1) / fista.next(fista.next(1));
Vector<Scalar> const first = (1e0 + alpha) * 3.1 * input - alpha * 2.1 * input;
CHECK(output.isApprox(first));
// step two: second mixing
fista(output, 4.1 * input, 1);
auto const beta = (fista.next(fista.next(1)) - 1) / fista.next(fista.next(fista.next(1)));
Vector<Scalar> const second = (1e0 + alpha) * 4.1 * input - alpha * first;
CHECK(output.isApprox(second));
}
}
SECTION("Breaker") {
proximal::L1<Scalar>::Breaker breaker(2e0);
SECTION("Finds convergence") {
std::vector<t_real> objectives
= {1.0, 0.9, 0.5, 0.6, 0.4, 0.4 + 0.41 * 1e-8, 0.3, 0.3 + 0.29 * 1e-8};
for(size_t i(0); i < objectives.size() - 1; ++i) {
CHECK(not breaker(objectives[i]));
CHECK(breaker.current() == Approx(objectives[i]).epsilon(1e-12));
}
CHECK(breaker(objectives.back()));
CHECK(not breaker.two_cycle());
CHECK(breaker.converged());
}
SECTION("Find cycle") {
std::vector<t_real> objectives = {1.0, 0.9, 0.5, 0.6, 0.4, 0.3, 0.4, 0.3};
for(size_t i(0); i < objectives.size() - 1; ++i) {
CHECK(not breaker(objectives[i]));
CHECK(breaker.current() == Approx(objectives[i]).epsilon(1e-12));
}
CHECK(breaker(objectives.back()));
CHECK(breaker.two_cycle());
CHECK(not breaker.converged());
}
}
}
TEST_CASE("L1 proximal", "[l1][proximal]") {
using namespace sopt;
typedef t_complex Scalar;
auto l1 = proximal::L1<Scalar>().tolerance(1e-10);
Vector<Scalar> const input = Vector<Scalar>::Random(4);
SECTION("Check against tight-frame") {
l1.fista_mixing(false);
SECTION("Scalar weights") {
auto const result = l1(1, input);
CHECK(result.good);
CHECK(result.niters > 0);
CHECK(l1.itermax() == 0);
CHECK(result.proximal.isApprox(proximal::L1TightFrame<Scalar>()(1, input)));
}
SECTION("Vector weights and more complex Psi") {
auto const Psi = concatenated_permutations<Scalar>(input.size(), input.size() * 10);
auto const weights = Vector<t_real>::Random(Psi.cols()).array().abs().matrix().eval();
auto const gamma = 1e-1 / Psi.array().abs().sum();
l1.Psi(Psi).weights(weights).tolerance(1e-12);
auto const result = l1(gamma, input);
CHECK(result.good);
CHECK(result.niters > 0);
auto const expected = l1.tight_frame(gamma, input).eval();
CHECK(result.objective == Approx(l1.objective(input, expected, gamma)));
CAPTURE((result.proximal - expected).array().abs().transpose());
CHECK(result.proximal.isApprox(expected));
}
}
SECTION("General case") {
auto check_is_minimum = [&l1, &input](t_real gamma, Vector<Scalar> const &proximal) {
// returns false if did not converge.
// Looks like computing the proximal does not always work...
auto const mini = l1.objective(input, proximal, gamma);
auto const eps = 1e-4;
// check alongst specific directions
for(Vector<Scalar>::Index i(0); i < proximal.size(); ++i) {
for(auto const dir : {Scalar(eps, 0), Scalar(0, eps), Scalar(-eps, 0), Scalar(0, -eps)}) {
Vector<Scalar> p_plus = proximal;
p_plus[i] += dir;
if(l1.positivity_constraint())
p_plus = sopt::positive_quadrant(p_plus);
else if(l1.real_constraint())
p_plus = p_plus.real().cast<Scalar>();
auto const rel_var = std::abs((l1.objective(input, p_plus, gamma) - mini) / mini);
CHECK((l1.objective(input, p_plus, gamma) > mini or rel_var < l1.tolerance() * 10));
}
}
// check alongst non-specific directions
for(size_t i(0); i < 10; ++i) {
Vector<Scalar> p_plus = proximal + proximal.Random(proximal.size()) * eps;
if(l1.positivity_constraint())
p_plus = sopt::positive_quadrant(p_plus);
else if(l1.real_constraint())
p_plus = p_plus.real().cast<Scalar>();
auto const rel_var = std::abs((l1.objective(input, p_plus, gamma) - mini) / mini);
CHECK((l1.objective(input, p_plus, gamma) > mini or rel_var < l1.tolerance() * 10));
}
};
auto const Psi = Matrix<Scalar>::Random(input.size(), input.size() * 10).eval();
auto const weights = Vector<t_real>::Random(Psi.cols()).array().abs().matrix().eval();
auto const gamma = 1e-1 / Psi.array().abs().sum();
l1.Psi(Psi).weights(weights).fista_mixing(true).tolerance(1e-10).itermax(5000);
SECTION("No constraints") {
CHECK(not l1.positivity_constraint());
CHECK(not l1.real_constraint());
auto const result = l1(gamma, input);
CHECK(result.good);
check_is_minimum(gamma, result.proximal);
}
SECTION("Positivity constraints") {
l1.positivity_constraint(true);
CHECK(l1.positivity_constraint());
CHECK(not l1.real_constraint());
auto const result = l1(gamma, input);
CHECK(result.good);
check_is_minimum(gamma, result.proximal);
}
SECTION("Real constraints") {
l1.real_constraint(true);
CHECK(l1.real_constraint());
CHECK(not l1.positivity_constraint());
auto const result = l1(gamma, input);
CHECK(result.good);
check_is_minimum(gamma, result.proximal);
}
}
}
|