1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
# Sparse OPTimisation Library
[](https://github.com/astro-informatics/sopt/actions/workflows/cmake.yml?query=branch%3Adevelopment+)
[](https://codecov.io/gh/astro-informatics/sopt)
[](https://doi.org/10.5281/zenodo.2584256)
## Description
**SOPT** is an open-source `C++` package available under the [license](#license) below. It performs Sparse OPTimisation using state-of-the-art convex optimisation algorithms. It solves a variety of sparse regularisation problems, including the Sparsity Averaging Reweighted Analysis (SARA) algorithm.
**SOPT** also has several MPI wrappers that can be adapted for computational distirbution of various linear operators and convex optimisation algorithms. Wavelet Operators with **SOPT** also support multi-threading through OpenMP.
**SOPT** is written in `C++` primarily but also contains partial and prototyped Matlab implementations of various algorithms.
**SOPT** is largely provided to support the [**PURIFY**](https://github.com/astro-informatics/purify) package, a companion open-source code to perform radio interferometric imaging, also written by the authors of **SOPT**. For further background please see the [reference](#references-and-citation) section.
This documentation outlines the necessary and optional [dependencies](#dependencies-installation) upon which **SOPT** should be built, before describing [installation](#installing-and-building-SOPT) and [testing](#testing) details and [Matlab](#Matlab) support. [Contributors](#contributors), [references](#references-and-citation) and [license](#license) information then follows.
## Dependencies installation
**SOPT** is mostly written in `C++17`. Pre-requisites and dependencies are listed in following and minimal versions required are tested against `Travis CI` meaning that they come natively with OSX and the Ubuntu Trusty release. These are also the default ones fetched by `CMake`.
`C++` minimal dependencies:
- [CMake](http://www.cmake.org/) v3.9.2 A free software that allows cross-platform compilation.
- [GCC](https://gcc.gnu.org) v7.3.0 GNU compiler for `C++`.
- [OpenMP](http://openmp.org/wp/) v4.8.4 (Trusty) - Optional - Speeds up some of the operations.
- [Eigen3](http://eigen.tuxfamily.org/index.php?title=Main_Page) v3.4.0 (Trusty) Modern `C++` linear algebra. Downloaded automatically if absent.
- [Catch2](https://github.com/catchorg/Catch2) v3.4.0 - Optional - A `C++`
unit-testing framework only needed for testing.
- [google/benchmark](https://github.com/google/benchmark) - Optional - A `C++`
micro-benchmarking framework only needed for benchmarks.
- [tiff](http://www.libtiff.org/) v4.5.1 (Trusty) Tag Image File Format library - only installed if needed.
- [ONNXruntime](https://onnxruntime.ai/) v1.17.1 - Optional - a cross-platform runtime engine based on the
Open Neural Network eXchange format.
## Installing and building SOPT
If the dependencies are already available on your system, you can install **SOPT** manually like so
``` bash
cd /path/to/code
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=${PWD}/../local
make -j
make -j install
```
On MacOS, you can also install most of the dependencies with Homebrew e.g.
``` bash
brew install libtensorflow eigen tiff catch2
```
**Note that on MacOS, the ONNXruntime currently only support Clang but not g++**
## Testing
To check everything went all right, run the test suite:
``` bash
cd /path/to/code/build
ctest .
```
## Machine-learning models
Machine-learning models are supported via the ONNXruntime interface.
Nearly all modern ML toolkits allow to export their trained models
into the ONNXruntime format using Python.
Install translation packages e.g. using `pip`:
```
pip install onnx
pip install onnxscript
```
PyTorch models can be exported to ONNXruntime like so
```
import torch
torch_model = ... # PyTorch model based on torch.nn
torch_input = torch_input = torch.randn(256, 256) # model input tensor
torch.onnx.export(torch_model,
torch_init,
'model_name.onnx', # output file name
export_params=True, # store trained param weights
opset_version=11, # ONNX version to export the model to
do_constant_folding=True, # optmise using pre-computed constant nodes
input_names=['input'],
output_names=['ouput'],
dynamic_axes={'input' : {0 : 'batch_size'},
'output' : {0 : 'batch_size'}})
```
Tensorflow models can be exported to ONNXruntime like so
```
python -m tf2onnx.convert
--saved-model model_name.pb
--output model_name.onnx
--opset 11
--inputs input0:0
--extra_opset StatefulPartitionedCall:0
```
After the export, load the model and verify that it's well formed like so
```
import onnx
onnx_model = onnx.load("model_name.onnx")
onnx.checker.check_model(onnx_model)
print( onnx_model.graph.input )
```
Hard-coded dimensions can be removed from the input/output tensor e.g. like so
```
print (onnx_model.graph.input[0].type.tensor_type.shape)
onnx_model.graph.input[0].type.tensor_type.shape.dim[1].ClearField('dim_value')
```
[Netron](https://netron.app/) is a useful online tool to help visualise the model.
## Matlab
A separate Matlab implementation is provided with **SOPT**.
This implementation includes some (but not all) of the optimisation algorithms implemented in the `C++` code, including the SARA algorithm.
The Matlab implementation is contained in the matlab directory.
This is a stand-alone implementation and does not call any of the `C++` code.
In future, Matlab interfaces to the `C++` code may also be included in **SOPT**.
See `matlab/README.txt` for an overview of the Matlab implementation.
The stand-alone Matlab implementation is also self-documenting;
corresponding documentation can be found in `matlab/doc`.
We thank Gilles Puy for contributing to this Matlab implementation.
## Contributors
Check the [contributors](@ref sopt_contributors) page ([github](cpp/docs/SOPT_CONTRIBUTORS.md)).
## References and citation
If you use **SOPT** for work that results in publication, please reference the [webpage](#webpage) and our related academic papers:
1. L. Pratley _et al._ (to be published)
2. A. Onose, R. E. Carrillo, A. Repetti, J. D. McEwen, J.-P. Thiran, J.-C. Pesquet, and Y. Wiaux.
"Scalable splitting algorithms for big-data interferometric imaging in the SKA era" _Mon. Not.
Roy. Astron. Soc._ **462(4):4314-4335** (2016) [arXiv:1601.04026](http://arxiv.org/abs/arXiv:1601.04026)
3. R. E. Carrillo, J. D. McEwen, D. Van De Ville, J.-P. Thiran, and Y. Wiaux. "Sparsity averaging
for compressive imaging" _IEEE Signal Processing Letters_ **20(6):591-594** (2013) [arXiv:1208.2330](http://arxiv.org/abs/arXiv:1208.2330)
4. R. E. Carrillo, J. D. McEwen and Y. Wiaux. "Sparsity Averaging Reweighted
Analysis (SARA): a novel algorithm for radio-interferometric imaging" _Mon.
Not. Roy. Astron. Soc._ **426(2):1223-1234** (2012) [arXiv:1205.3123](http://arxiv.org/abs/arXiv:1205.3123)
## License
> SOPT: Sparse OPTimisation package
> Copyright (C) 2013-2024
>
> This program is free software; you can redistribute it and/or
> modify it under the terms of the GNU General Public License as
> published by the Free Software Foundation; either version 2 of the
> License, or (at your option) any later version.
>
> This program is distributed in the hope that it will be useful, but
> WITHOUT ANY WARRANTY; without even the implied warranty of
> MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
> General Public License for more details (LICENSE.txt).
>
> You should have received a copy of the GNU General Public License
> along with this program; if not, write to the Free Software
> Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
> 02110-1301, USA.
## Webpage
- [Documentation](http://astro-informatics.github.io/sopt)
- [Repository](https://github.com/astro-informatics/sopt)
## Support
For any questions or comments, feel free to contact [Jason McEwen](http://www.jasonmcewen.org), or add
an issue to the [issue tracker](https://github.com/astro-informatics/sopt/issues).
## Notes
The code is given for educational purpose. For the `Matlab` version of the code see the folder matlab.
|