File: communicator.cc

package info (click to toggle)
sopt 4.2.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,632 kB
  • sloc: cpp: 13,011; xml: 182; makefile: 6
file content (177 lines) | stat: -rw-r--r-- 6,484 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#include <iostream>
#include <numeric>
#include "catch2/catch_all.hpp"

#include "sopt/config.h"
#include "sopt/mpi/communicator.h"

using namespace sopt;

#ifdef SOPT_MPI
TEST_CASE("Creates an mpi communicator") {
  int rank;
  int size;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);

  auto const world = mpi::Communicator::World();

  SECTION("General stuff") {
    REQUIRE(*world == MPI_COMM_WORLD);
    REQUIRE(static_cast<t_int>(world.rank()) == rank);
    REQUIRE(static_cast<t_int>(world.size()) == size);

    mpi::Communicator const shallow = world;
    CHECK(*shallow == *world);
  }

  SECTION("Duplicate") {
    mpi::Communicator const dup = world.duplicate();
    CHECK(*dup != *world);
  }

  SECTION("Scatter") {
    if (world.rank() == world.root_id()) {
      std::vector<t_int> scattered(world.size());
      std::iota(scattered.begin(), scattered.end(), 2);
      auto const result = world.scatter_one(scattered);
      CHECK(result == world.rank() + 2);
    } else {
      auto const result = world.scatter_one<t_int>();
      CHECK(result == world.rank() + 2);
    }
  }

  SECTION("ScatterV") {
    std::vector<t_int> sizes(world.size());
    std::vector<t_int> displs(world.size());
    for (t_uint i(0); i < world.rank(); ++i) sizes[i] = world.rank() * 2 + i;
    for (t_uint i(1); i < world.rank(); ++i) displs[i] = displs[i - 1] + sizes[i - 1];
    Vector<t_int> const sendee =
        Vector<t_int>::Random(std::accumulate(sizes.begin(), sizes.end(), 0));
    auto const result = world.rank() == world.root_id()
                            ? world.scatterv(sendee, sizes)
                            : world.scatterv<t_int>(sizes[world.rank()]);
    CHECK(result.isApprox(sendee.segment(displs[world.rank()], sizes[world.rank()])));
  }

  SECTION("Gather a single item") {
    if (world.rank() == world.root_id()) {
      std::vector<t_int> scattered(world.size());
      std::iota(scattered.begin(), scattered.end(), 2);
      auto const result = world.scatter_one(scattered);
      REQUIRE(result == world.rank() + 2);
      auto const gathered = world.gather(result);
      for (decltype(gathered)::size_type i = 0; i < gathered.size(); i++)
        CHECK(gathered[i] == scattered[i]);
    } else {
      auto const result = world.scatter_one<t_int>();
      REQUIRE(result == world.rank() + 2);
      auto const gather = world.gather(result);
      CHECK(gather.empty());
    }
  }

  SECTION("Gather an eigen vector") {
    auto const size = [](t_int n) { return n * 2 + 10; };
    auto const totsize = [](t_int n) { return std::max<t_int>(0, n * (9 + n)); };
    Vector<t_int> const sendee = Vector<t_int>::Constant(size(world.rank()), world.rank());
    std::vector<t_int> sizes(world.size());
    int n(0);
    std::generate(sizes.begin(), sizes.end(), [&n, &size]() { return size(n++); });

    auto const result = world.is_root() ? world.gather(sendee, sizes) : world.gather(sendee);
    if (world.rank() == world.root_id()) {
      CHECK(result.size() == totsize(world.size()));
      for (decltype(world.size()) i(0); i < world.size(); ++i)
        CHECK(result.segment(totsize(i), size(i)) == Vector<t_int>::Constant(size(i), i));
    } else
      CHECK(result.size() == 0);
  }

  SECTION("Gather an std::set") {
    std::set<t_int> const input{static_cast<t_int>(world.size()), static_cast<t_int>(world.rank())};
    auto const result = world.gather(input, world.gather<t_int>(input.size()));
    if (world.is_root()) {
      CHECK(result.size() == world.size() + 1);
      for (decltype(world.size()) i(0); i <= world.size(); ++i) CHECK(result.count(i) == 1);
    } else
      CHECK(result.empty());
  }

  SECTION("Gather an std::vector") {
    std::vector<t_int> const input{static_cast<t_int>(world.size()),
                                   static_cast<t_int>(world.rank())};
    auto const result = world.gather(input, world.gather<t_int>(input.size()));
    if (world.is_root()) {
      CHECK(result.size() == world.size() * 2);
      for (decltype(world.size()) i(0); i < world.size(); ++i) {
        CHECK(result[2 * i] == world.size());
        CHECK(result[2 * i + 1] == i);
      }
    } else
      CHECK(result.empty());
  }

  SECTION("All sum all over image") {
    Image<t_int> image(2, 2);
    image.fill(world.rank());
    world.all_sum_all(image);
    CHECK((2 * image == world.size() * (world.size() - 1)).all());
  }

  SECTION("Broadcast") {
    SECTION("integer") {
      auto const result = world.broadcast(world.root_id() == world.rank() ? 5 : 2, world.root_id());
      CHECK(result == 5);
    }

    SECTION("Eigen vector") {
      Vector<t_int> y0(3);
      y0 << 3, 2, 1;
      auto const y =
          world.rank() == world.root_id() ? world.broadcast(y0) : world.broadcast<Vector<t_int>>();
      CHECK(y == y0);

      std::vector<t_int> v0 = {3, 2, 1};
      auto const v = world.rank() == world.root_id() ? world.broadcast(v0)
                                                     : world.broadcast<std::vector<t_int>>();
      CHECK(std::equal(v.begin(), v.end(), v0.begin()));
    }

    SECTION("Eigen image - and check for correct size initialization") {
      Image<t_int> image0(2, 2);
      image0 << 3, 2, 1, 0;
      auto const image = world.rank() == world.root_id() ? world.broadcast(image0)
                                                         : world.broadcast<Image<t_int>>();
      CHECK(image.matrix() == image0.matrix());

      Image<t_int> const image1 = world.is_root() ? image0 : Image<t_int>();
      CHECK(world.broadcast(image1).matrix() == image0.matrix());
    }

    SECTION("std::string") {
      const auto *const expected = "Hello World!";
      std::string const input = world.is_root() ? expected : "";
      CHECK(world.broadcast(input) == expected);
    }
    SECTION("all_to_allv") {
      //
      std::vector<t_int> sizes(world.size(), world.rank());
      const Vector<t_int> sendee =
          Vector<t_int>::Constant(std::accumulate(sizes.begin(), sizes.end(), 0), world.rank());
      const Vector<t_int> output = world.all_to_allv(sendee, sizes);
      t_int sum = 0;
      for (t_int i = 0; i < world.size() - 1; i++) {
        const Vector<t_int> expected = Vector<t_int>::Constant(i + 1, i + 1);
        CAPTURE(sum);
        CAPTURE(i);
        CAPTURE(output.segment(sum, i + 1));
        CAPTURE(expected);
        REQUIRE(output.segment(sum, i + 1).isApprox(expected));
        sum += i + 1;
      }
    }
  }
}
#endif