1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#include <catch2/catch_all.hpp>
#include <random>
#include <Eigen/Dense>
#include "sopt/proximal.h"
#include "sopt/sdmm.h"
#include "sopt/types.h"
sopt::t_int random_integer(sopt::t_int min, sopt::t_int max) {
extern std::unique_ptr<std::mt19937_64> mersenne;
std::uniform_int_distribution<sopt::t_int> uniform_dist(min, max);
return uniform_dist(*mersenne);
};
using Scalar = sopt::t_real;
using t_Vector = sopt::Vector<Scalar>;
using t_Matrix = sopt::Matrix<Scalar>;
auto constexpr N = 4;
// Makes members public so we can test one at a time
class IntrospectSDMM : public sopt::algorithm::SDMM<Scalar> {
public:
using sopt::algorithm::SDMM<Scalar>::initialization;
using sopt::algorithm::SDMM<Scalar>::solve_for_xn;
using sopt::algorithm::SDMM<Scalar>::update_directions;
using sopt::algorithm::SDMM<Scalar>::t_Vectors;
using sopt::algorithm::SDMM<Scalar>::t_Vector;
};
TEST_CASE("Proximal translation", "[proximal]") {
using namespace sopt;
t_Vector const translation = t_Vector::Ones(N) * 5;
auto const g = proximal::EuclidianNorm();
auto const gT = proximal::translate(g, -translation);
t_Vector const input = t_Vector::Random(N).array() + 1e0;
CHECK(g(0.1, input).isApprox((1e0 - 0.1 / input.stableNorm()) * input));
auto const gamma = input.stableNorm() * 0.5;
CHECK(g(gamma, input).isApprox((1e0 - gamma / input.stableNorm()) * input));
CHECK(g(gamma * 2 + 1, input).isApprox(input.Zero(N)));
CHECK(gT(0.1, input)
.isApprox((1e0 - 0.1 / (input - translation).stableNorm()) * (input - translation) +
translation));
}
// Iterate through algorithm for special case where the L_i are identies and the objective functions
// are simple euclidian norms
TEST_CASE("Introspect SDMM with L_i = Identity and Euclidian objectives", "[sdmm]") {
using namespace sopt;
t_Matrix const Id = t_Matrix::Identity(N, N).eval();
t_Vector const target0 = t_Vector::Zero(N);
t_Vector const target1 = t_Vector::Random(N);
auto const g0 = proximal::translate(proximal::EuclidianNorm(), -target0);
auto const g1 = proximal::translate(proximal::EuclidianNorm(), -target1);
t_Vector const input = 10 * t_Vector::Random(N);
IntrospectSDMM sdmm = IntrospectSDMM();
sdmm.itermax(10)
.gamma(0.01)
.conjugate_gradient(std::numeric_limits<t_uint>::max(), 1e-12)
.append(g0, Id)
.append(g1, Id);
SECTION("Step by Step") {
INFO("Initialization");
t_Vector out = input;
IntrospectSDMM::t_Vectors y(sdmm.transforms().size(), t_Vector::Zero(out.size()));
IntrospectSDMM::t_Vectors z(sdmm.transforms().size(), t_Vector::Zero(out.size()));
sdmm.initialization(y, z, out);
CHECK(y[0].isApprox(input));
CHECK(y[1].isApprox(input));
INFO("\nThen solve for conjugate gradient");
auto const diagnostic0 = sdmm.solve_for_xn(out, y, z);
CHECK(diagnostic0.good);
CAPTURE(out.transpose());
CAPTURE(input.transpose());
CAPTURE(0.5 * (y[0] + y[1]).transpose());
CHECK(out.isApprox(0.5 * (y[0] + y[1]), 1e-8));
CHECK(out.isApprox(input, 1e-8));
INFO("\nWe move on to first iteration!");
INFO("- updates y and z");
sdmm.update_directions(y, z, out);
CHECK(y[0].isApprox(g0(sdmm.gamma(), input)));
CHECK(y[1].isApprox(g1(sdmm.gamma(), input)));
CHECK(z[0].isApprox(input - y[0]));
CHECK(z[1].isApprox(input - y[1]));
INFO("- solve for conjugate gradient");
auto const diagnostic1 = sdmm.solve_for_xn(out, y, z);
CHECK(diagnostic1.good);
CAPTURE(out.transpose());
CAPTURE((0.5 * (y[0] - z[0] + y[1] - z[1])).transpose());
CHECK(out.isApprox(0.5 * (y[0] - z[0] + y[1] - z[1])));
t_Vector const x1 = g0(sdmm.gamma(), input) + g1(sdmm.gamma(), input) - input;
CHECK(out.isApprox(x1));
INFO("\nWe move on to second iteration!");
INFO("- updates y and z");
sdmm.update_directions(y, z, out);
CHECK(y[0].isApprox(g0(sdmm.gamma(), g1(sdmm.gamma(), input))));
CHECK(y[1].isApprox(g1(sdmm.gamma(), g0(sdmm.gamma(), input))));
CHECK(z[0].isApprox(g1(sdmm.gamma(), input) - y[0]));
CHECK(z[1].isApprox(g0(sdmm.gamma(), input) - y[1]));
INFO("- solve for conjugate gradient");
auto const diagnostic2 = sdmm.solve_for_xn(out, y, z);
CHECK(diagnostic2.good);
CHECK(out.isApprox(0.5 * (y[0] - z[0] + y[1] - z[1])));
t_Vector const x2 = g0(sdmm.gamma(), g1(sdmm.gamma(), input)) +
g1(sdmm.gamma(), g0(sdmm.gamma(), input)) - 0.5 * g1(sdmm.gamma(), input) -
0.5 * g0(sdmm.gamma(), input);
CHECK(out.isApprox(x2));
}
SECTION("Iteration by Iteration") {
t_Vector out;
SECTION("First Iteration") {
sdmm.itermax(1);
auto const diagnostic = sdmm(out, input);
CHECK(not diagnostic.good);
CHECK(diagnostic.niters == 1);
CHECK(out.isApprox(g0(sdmm.gamma(), input) + g1(sdmm.gamma(), input) - input));
}
SECTION("Second Iteration") {
sdmm.itermax(2);
auto const diagnostic = sdmm(out, input);
CHECK(not diagnostic.good);
CHECK(diagnostic.niters == 2);
t_Vector const x2 = g0(sdmm.gamma(), g1(sdmm.gamma(), input)) +
g1(sdmm.gamma(), g0(sdmm.gamma(), input)) -
0.5 * g1(sdmm.gamma(), input) - 0.5 * g0(sdmm.gamma(), input);
CHECK(out.isApprox(x2));
}
SECTION("Nth Iterations") {
sdmm.gamma(1);
for (t_uint itermax(0); itermax < 10; ++itermax) {
t_Vector x = input;
t_Vector y[2] = {x, x};
t_Vector z[2] = {t_Vector::Zero(N).eval(), t_Vector::Zero(N).eval()};
for (t_uint i(0); i < itermax; ++i) {
y[0] = g0(sdmm.gamma(), x + z[0]);
y[1] = g1(sdmm.gamma(), x + z[1]);
z[0] += x - g0(sdmm.gamma(), x + z[0]);
z[1] += x - g1(sdmm.gamma(), x + z[1]);
x = 0.5 * (y[0] - z[0] + y[1] - z[1]);
}
sdmm.itermax(itermax);
auto const diagnostic = sdmm(out, input);
CHECK(out.isApprox(x, 1e-8));
CHECK(not diagnostic.good);
CHECK(diagnostic.niters == itermax);
}
}
}
}
TEST_CASE("SDMM with ||x - x0||_2 functions", "[sdmm][integration]") {
using namespace sopt;
t_Matrix const Id = t_Matrix::Identity(N, N).eval();
t_Vector const target0 = t_Vector::Random(N);
t_Vector target1 = t_Vector::Random(N) * 4;
// for(t_uint i(0); i < N; ++i) target1(i) = i + 1;
auto sdmm = algorithm::SDMM<Scalar>()
.itermax(5000)
.gamma(1)
.conjugate_gradient(std::numeric_limits<t_uint>::max(), 1e-12)
.append(proximal::translate(proximal::EuclidianNorm(), -target0), Id)
.append(proximal::translate(proximal::EuclidianNorm(), -target1), Id);
t_Vector result;
SECTION("Just two operators") {
auto const diagnostic = sdmm(result, t_Vector::Random(N));
CHECK(not diagnostic.good);
CHECK(diagnostic.niters == sdmm.itermax());
t_Vector const segment = (target1 - target0).normalized();
t_real const alpha = (result - target0).transpose() * segment;
CAPTURE(target0.transpose());
CAPTURE(target1.transpose());
CHECK((target1 - target0).transpose() * segment >= alpha);
CHECK(alpha >= 0e0);
CHECK((result - target0 - alpha * segment).stableNorm() < 1e-8);
}
SECTION("Three operators") {
t_Vector const target2 = t_Vector::Random(N) * 8;
sdmm.append(proximal::translate(proximal::EuclidianNorm(), -target2), Id);
auto const diagnostic = sdmm(result, t_Vector::Random(N));
CHECK(not diagnostic.good);
CHECK(diagnostic.niters == sdmm.itermax());
CAPTURE(result.transpose());
auto const func = [&target0, &target1, &target2](t_Vector const &x) {
return (x - target0).stableNorm() + (x - target1).stableNorm() + (x - target2).stableNorm();
};
for (int i(0); i < N; ++i) {
t_Vector epsilon = t_Vector::Zero(N);
epsilon(i) = 1e-6;
CHECK(func(result) < func(result + epsilon));
CHECK(func(result) < func(result - epsilon));
}
}
SECTION("With different L") {
t_Matrix const L0 = t_Matrix::Random(N, N) * 2;
t_Matrix const L1 = t_Matrix::Random(N, N) * 4;
REQUIRE(std::abs((L0.transpose() * L0 + L1.transpose() * L1).determinant()) > 1e-8);
sdmm.itermax(300);
sdmm.transforms(0) = linear_transform(L0);
sdmm.transforms(1) = linear_transform(L1);
auto const diagnostic = sdmm(result, t_Vector::Random(N));
CHECK(not diagnostic.good);
CHECK(diagnostic.niters == sdmm.itermax());
CAPTURE(result.transpose());
auto const func = [&target0, &target1, &L0, &L1](t_Vector const &x) {
return (L0 * x - target0).stableNorm() + (L1 * x - target1).stableNorm();
};
for (int i(0); i < N; ++i) {
t_Vector epsilon = t_Vector::Zero(N);
epsilon(i) = 1e-3;
CAPTURE(epsilon.transpose());
CHECK(func(result) <= func(result + epsilon));
CHECK(func(result) <= func(result - epsilon));
}
}
}
|