1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
#include <catch2/catch_all.hpp>
#include <memory>
#include <random>
#include "sopt/types.h"
#include "sopt/wavelets/direct.h"
#include "sopt/wavelets/indirect.h"
#include "sopt/wavelets/wavelet_data.h"
#include "sopt/wavelets/wavelets.h"
using t_iVector = sopt::Array<sopt::t_uint>;
t_iVector even(t_iVector const &x) {
t_iVector result((x.size() + 1) / 2);
for (t_iVector::Index i(0); i < x.size(); i += 2) result(i / 2) = x(i);
return result;
};
t_iVector odd(t_iVector const &x) {
t_iVector result(x.size() / 2);
for (t_iVector::Index i(1); i < x.size(); i += 2) result(i / 2) = x(i);
return result;
};
template <typename T>
Eigen::Array<typename T::Scalar, T::RowsAtCompileTime, T::ColsAtCompileTime> upsample(
Eigen::ArrayBase<T> const &input) {
using Matrix = Eigen::Array<typename T::Scalar, T::RowsAtCompileTime, T::ColsAtCompileTime>;
Matrix result(input.size() * 2);
for (t_iVector::Index i(0); i < input.size(); ++i) {
result(2 * i) = input(i);
result(2 * i + 1) = 0;
}
return result;
};
sopt::t_int random_integer(sopt::t_int min, sopt::t_int max) {
extern std::unique_ptr<std::mt19937_64> mersenne;
std::uniform_int_distribution<sopt::t_int> uniform_dist(min, max);
return uniform_dist(*mersenne);
};
t_iVector random_ivector(sopt::t_int size, sopt::t_int min, sopt::t_int max) {
extern std::unique_ptr<std::mt19937_64> mersenne;
t_iVector result(size);
std::uniform_int_distribution<sopt::t_int> uniform_dist(min, max);
for (t_iVector::Index i(0); i < result.size(); ++i) result(i) = uniform_dist(*mersenne);
return result;
};
// Checks round trip operation
template <typename T0>
void check_round_trip(Eigen::ArrayBase<T0> const &input_, sopt::t_uint db,
sopt::t_uint nlevels = 1) {
auto const input = input_.eval();
auto const &dbwave = sopt::wavelets::daubechies_data(db);
auto const transform = sopt::wavelets::direct_transform(input, nlevels, dbwave);
auto const actual = sopt::wavelets::indirect_transform(transform, nlevels, dbwave);
CAPTURE(actual);
CAPTURE(input);
CAPTURE(transform);
CHECK(input.isApprox(actual, 1e-14));
CHECK(not transform.isApprox(sopt::wavelets::direct_transform(input, nlevels - 1, dbwave), 1e-4));
}
TEST_CASE("wavelet data") {
for (sopt::t_int num = 1; num < 100; num++) {
if (num < 39)
REQUIRE(sopt::wavelets::daubechies_data(num).coefficients.size() == 2 * num);
else
REQUIRE_THROWS(sopt::wavelets::daubechies_data(num));
}
}
TEST_CASE("Wavelet transform innards with integer data", "[wavelet]") {
using namespace sopt::wavelets;
t_iVector small(3);
small << 1, 2, 3;
t_iVector large(6);
large << 4, 5, 6, 7, 8, 9;
SECTION("Periodic scalar product") {
// no wrapping
CHECK(periodic_scalar_product(large, small, 0) == 1 * 4 + 2 * 5 + 3 * 6);
CHECK(periodic_scalar_product(large, small, 1) == 1 * 5 + 2 * 6 + 3 * 7);
CHECK(periodic_scalar_product(large, small, 3) == 1 * 7 + 2 * 8 + 3 * 9);
// with wrapping
CHECK(periodic_scalar_product(large, small, 4) == 1 * 8 + 2 * 9 + 3 * 4);
// with wrapping and expression
CHECK(periodic_scalar_product(large, small.reverse(), 4) == 3 * 8 + 2 * 9 + 1 * 4);
// wrapping works with offset as well
CHECK(periodic_scalar_product(large, small, 4 + large.size()) == 1 * 8 + 2 * 9 + 3 * 4);
CHECK(periodic_scalar_product(large, small, 4 - 3 * large.size()) == 1 * 8 + 2 * 9 + 3 * 4);
// signal smaller than filter
CHECK(periodic_scalar_product(small, large.head(4), 1) == 4 * 2 + 5 * 3 + 6 * 1 + 7 * 2);
}
SECTION("Convolve") {
t_iVector result(large.size());
convolve(result, large, small);
CHECK(result(0) == 1 * 4 + 2 * 5 + 3 * 6);
CHECK(result(1) == 1 * 5 + 2 * 6 + 3 * 7);
CHECK(result(3) == 1 * 7 + 2 * 8 + 3 * 9);
CHECK(result(4) == 1 * 8 + 2 * 9 + 3 * 4);
}
SECTION("Convolve and sum") {
t_iVector result(large.size());
t_iVector noOffset(large.size());
// Check that if high pass is zero, then this is an offseted convolution
convolve_sum(result, large, small, large, 0 * small);
convolve(noOffset, large, small);
CHECK(result(small.size() - 1) == noOffset(0));
CHECK(result(0) == noOffset(result.size() - small.size() + 1));
// Check same for low pass
convolve_sum(result, large, 0 * small, large, small);
CHECK(result(small.size() - 1) == noOffset(0));
CHECK(result(0) == noOffset(result.size() - small.size() + 1));
// Check symmetry relationships
auto const trial = [&small, &large](int a, int b, int c, int d) {
t_iVector result(large.size());
convolve_sum(result, a * large, b * small, c * large, d * small);
return result;
};
// should all be ok as long as arguments sum: (a * b) + (c * d) == (a' * b') + (c' * d')
CHECK((trial(0, 1, 3, 1) == trial(0, 1, 1, 3)).all());
CHECK((trial(5, 1, 3, 1) == trial(3, 1, 5, 1)).all());
CHECK((trial(1, 5, 3, 1) == trial(3, 1, 5, 1)).all());
CHECK((trial(1, 3, 5, 1) == trial(3, 1, 5, 1)).all());
CHECK((trial(1, 3, 1, 5) == trial(3, 1, 5, 1)).all());
CHECK((trial(1, 0, 4, 2) == trial(3, 1, 5, 1)).all());
CHECK((trial(1, -1, 1, 1) == trial(0, 1, 0, 1)).all());
CHECK((trial(4, -3, 2, 6) == trial(0, 1, 0, 1)).all());
}
SECTION("Convolve and Down-sample simultaneously") {
t_iVector expected(large.size());
convolve(expected, large, small);
t_iVector actual(large.size() / 2);
down_convolve(actual, large, small);
for (size_t i(0); i < static_cast<size_t>(actual.size()); ++i)
CHECK(expected(i * 2) == actual(i));
}
SECTION("Convolve output to expression") {
t_iVector actual(large.size() * 2);
t_iVector expected(large.size());
convolve(actual.head(large.size()), large, small);
convolve(expected, large, small);
CHECK((actual.head(large.size()) == expected).all());
}
SECTION("Copy does copy") {
auto result = copy(large);
CHECK(large.data() != result.data());
auto actual = copy(large.head(3));
CHECK(large.data() != actual.data());
CHECK(large.data() == large.head(3).data());
}
SECTION("Convolve, Sum and Up-sample simultaneously") {
for (sopt::t_int i(0); i < 100; ++i) {
auto const Ncoeffs = random_integer(2, 10) * 2;
auto const Nfilters = random_integer(2, 5);
auto const Nhead = Ncoeffs / 2;
auto const Ntail = Ncoeffs - Nhead;
auto const coeffs = random_ivector(Ncoeffs, -10, 10);
auto const low = random_ivector(Nfilters, -10, 10);
auto const high = random_ivector(Nfilters, -10, 10);
t_iVector actual(Ncoeffs);
t_iVector expected(Ncoeffs);
// does all in go, more complicated but compuationally less intensive
up_convolve_sum(actual, coeffs, even(low), odd(low), even(high), odd(high));
// first up-samples, then does convolve: conceptually simpler but does unnecessary operations
convolve_sum(expected, upsample(coeffs.head(Nhead)), low, upsample(coeffs.tail(Ntail)), high);
CHECK((actual == expected).all());
}
}
}
TEST_CASE("1D wavelet transform with floating point data", "[wavelet]") {
using namespace sopt;
using namespace sopt::wavelets;
Image<> const data = Image<>::Random(16, 16);
auto const &wavelet = daubechies_data(4);
// Condition on input fixture data
REQUIRE((data.rows() % 2 == 0 and (data.cols() == 1 or data.cols() % 2 == 0)));
SECTION("Direct transform == two downsample + convolution") {
auto const actual = direct_transform(data.row(0), 1, wavelet);
Array<> high(data.cols() / 2);
Array<> low(data.cols() / 2);
down_convolve(high, data.row(0), wavelet.direct_filter.high);
down_convolve(low, data.row(0), wavelet.direct_filter.low);
CHECK(low.transpose().isApprox(actual.head(data.row(0).size() / 2)));
CHECK(high.transpose().isApprox(actual.tail(data.row(0).size() / 2)));
}
SECTION("Indirect transform == two upsample + convolution") {
auto const actual = indirect_transform(data.row(0).transpose(), 1, wavelet);
auto const low = upsample(data.row(0).transpose().head(data.rows() / 2));
auto const high = upsample(data.row(0).transpose().tail(data.rows() / 2));
auto expected = copy(data.row(0).transpose());
convolve_sum(expected, low, wavelet.direct_filter.low.reverse(), high,
wavelet.direct_filter.high.reverse());
CAPTURE(expected.transpose());
CAPTURE(actual.transpose());
CHECK(expected.isApprox(actual));
}
SECTION("Round-trip test for single level") {
for (t_int i(0); i < 20; ++i) {
check_round_trip(Array<>::Random(random_integer(2, 100) * 2), random_integer(1, 38), 1);
}
}
SECTION("Round-trip test for two levels") {
check_round_trip(Array<>::Random(8), 1, 2);
check_round_trip(Array<>::Random(8), 2, 2);
check_round_trip(Array<>::Random(16), 4, 2);
check_round_trip(Array<>::Random(52), 10, 2);
}
t_uint constexpr nlevels = 5;
SECTION("Round-trip test for multiple levels") {
for (t_int i(0); i < 10; ++i) {
auto const n = random_integer(2, nlevels);
check_round_trip(Array<>::Random(random_integer(2, 100) * (1u << n)), random_integer(1, 38),
n);
}
}
}
TEST_CASE("1D wavelet transform with complex data", "[wavelet]") {
using namespace sopt;
using namespace sopt::wavelets;
SECTION("Round-trip test for complex data") {
auto input = Array<t_complex>::Random(random_integer(2, 100) * 2).eval();
auto const &dbwave = daubechies_data(random_integer(1, 38));
auto const actual = indirect_transform(direct_transform(input, 1, dbwave), 1, dbwave);
CHECK(input.isApprox(actual, 1e-14));
CHECK(not input.isApprox(direct_transform(input, 1, dbwave), 1e-4));
}
}
TEST_CASE("2D wavelet transform with real data", "[wavelet]") {
using namespace sopt;
using namespace sopt::wavelets;
SECTION("Single level round-trip test for square matrix") {
auto N = random_integer(2, 100) * 2;
check_round_trip(Image<>::Random(N, N), random_integer(1, 38), 1);
}
SECTION("Single level round-trip test for non-square matrix") {
auto Nx = random_integer(2, 5) * 2;
auto Ny = Nx + 5 * 2;
check_round_trip(Image<>::Random(Nx, Ny), random_integer(1, 38), 1);
}
SECTION("Round-trip test for multiple levels") {
for (t_int i(0); i < 10; ++i) {
auto const n = random_integer(2, 5);
auto const Nx = random_integer(2, 5) * (1u << n);
auto const Ny = random_integer(2, 5) * (1u << n);
check_round_trip(Image<>::Random(Nx, Ny), random_integer(1, 38), n);
}
}
}
TEST_CASE("Functor implementation", "[wavelet]") {
using namespace sopt;
auto const wavelet = wavelets::factory("DB3", 4);
auto const input = Image<t_complex>::Random(256, 128).eval();
SECTION("Normal instances") {
auto const transform = wavelet.direct(input);
CHECK(transform.isApprox(wavelets::direct_transform(input, wavelet.levels(), wavelet)));
CHECK(input.isApprox(wavelet.indirect(transform)));
}
SECTION("Expression instances") {
Image<t_complex> output(2, input.cols());
wavelet.direct(output.row(0).transpose(), input.row(0).transpose());
wavelet.indirect(output.row(0).transpose(), output.row(1).transpose());
CHECK(input.row(0).isApprox(output.row(1)));
}
}
TEST_CASE("Automatic input resizing", "[wavelet]") {
using namespace sopt;
auto const wavelet = wavelets::factory("DB3", 4);
auto const input = Image<t_complex>::Random(256, 128).eval();
Image<t_complex> output(1, 1);
wavelet.direct(output, input);
CHECK(output.rows() == input.rows());
CHECK(output.cols() == input.cols());
output.resize(1, 1);
wavelet.indirect(input, output);
CHECK(output.rows() == input.rows());
CHECK(output.cols() == input.cols());
}
TEST_CASE("Dirac wavelets") {
using namespace sopt;
auto const wavelet = wavelets::factory("Dirac");
Image<t_complex> const input = Image<t_complex>::Random(256, 128);
Image<t_complex> output(1, 1);
wavelet.direct(output, input);
CHECK(output.isApprox(input));
output = Image<t_complex>::Zero(1, 1);
wavelet.indirect(input, output);
CHECK(output.isApprox(input));
}
|