1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
"""Benchmark SortedContainers at scale.
## Local Results
$ pypy benchmark_scale.py --limit 1e9
@ Method Size Operations Time Ops/Sec Ratio
@ add 1e+06 1e+04 0.01501 666045.025 nan
@ add 1e+07 1e+05 0.26612 375764.681 1.773
@ add 1e+08 1e+06 4.69080 213183.298 1.763
@ add 1e+09 1e+07 83.01831 120455.358 1.770
@ del 1e+06 1e+04 0.00827 1208897.485 nan
@ del 1e+07 1e+05 0.13309 751393.836 1.609
@ del 1e+08 1e+06 3.79143 263752.866 2.849
@ del 1e+09 1e+07 124.59184 80262.081 3.286
## High Memory Instance Results
Note: Requires ~128 GB of memory.
Note: Requires ~11 hrs to run.
$ nohup /home/grantj/PyPy27/bin/pypy benchmark_scale.py &
$ cat nohup.out
@ Method Size Ops Time Ops/Sec Ratio
@ add 1e+06 1e+04 0.02133 468884.826 nan
@ add 1e+07 1e+05 0.38629 258872.924 1.811
@ add 1e+08 1e+06 6.20695 161109.825 1.607
@ add 1e+09 1e+07 120.24735 83161.919 1.937
@ add 1e+10 1e+08 2416.60713 41380.330 2.010
@ del 1e+06 1e+04 0.01791 558289.343 nan
@ del 1e+07 1e+05 0.26171 382097.449 1.461
@ del 1e+08 1e+06 6.11150 163626.036 2.335
@ del 1e+09 1e+07 171.58899 58278.798 2.808
@ del 1e+10 1e+08 5493.95076 18201.838 3.202
### CPU Info
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU @ 2.30GHz
Stepping: 0
CPU MHz: 2299.998
BogoMIPS: 4599.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K
NUMA node0 CPU(s): 0-31
"""
from __future__ import print_function
import argparse
import collections as co
import functools as ft
import gc
import itertools as it
import math
import random
import sortedcontainers as sc
import sys
import time
CHECK = False
def iter_with_description(iterable, description=''):
"Placeholder iterator function with ignored description parameter."
return iter(iterable)
PROGRESS = iter_with_description
def init_sorted_list(sl, size, moment=5, fraction=0.1):
"""Initialize SortedList with normally distributed sublist lengths.
The mean of the normal distribution is given by:
mu = load * (1.0 + moment / 10.0)
And the standard deviation of the normal distribution is given by:
sigma = load * fraction
For a visualization of positive and negative moments see:
* plot_lengths_histogram.py
* plot_lengths_histogram_delitem.py
:param SortedList sl: SortedList to initialize
:param int size: size of the resulting SortedList
:param int moment: number between -5 and 9 inclusive
:param float fraction: fraction of load to be used as standard deviation
:return: initialized sorted list
"""
assert -5 <= moment <= 9
assert 0 < fraction
sl.clear()
load = sl._load
half = sl._load >> 1
twice = sl._load << 1
mu = load * (1.0 + moment / 10.0)
sigma = load * fraction
total = 0
class WhileIterator(object):
"Convert for-loop to while-loop with length estimate."
def __iter__(self):
while total < size:
yield True
def __len__(self):
if moment < 0:
return size / half
else:
return size / load
for each in PROGRESS(WhileIterator(), 'init-sub'):
count = int(random.normalvariate(mu, sigma))
if moment >= 0:
if count < load:
count += load
elif count > twice:
count -= load
count = min(count, twice)
count = max(count, load)
else:
if count < half:
count += half
elif count > load:
count -= half
count = min(count, load)
count = max(count, half)
sl._lists.append(list(xrange(total, total + count)))
total += count
sl._len = sum(len(sublist) for sublist in sl._lists)
sl._maxes[:] = [sublist[-1] for sublist in sl._lists]
for each in PROGRESS(xrange(len(sl) - size), 'init-del'):
del sl[random.randrange(len(sl))]
del sl._index[:]
if CHECK: sl._check()
assert len(sl) == size
return sl
def timeit(func):
"Decorator to time function calls."
@ft.wraps(func)
def wrapper(*args, **kwargs):
"Return timed duration of function call. Ignores function result."
start = time.clock()
result = func(*args, **kwargs)
end = time.clock()
return (end - start)
return wrapper
@timeit
def add(obj, numbers):
"Repeatedly add number from numbers to sorted list."
for number in PROGRESS(numbers, 'add'):
obj.add(number)
@timeit
def delitem(obj, indices):
"Repeatedly delete values from sorted list by index in indices."
for index in PROGRESS(indices, 'del'):
del obj[index]
def randvalues(limit, fraction=0.001):
"Return fraction of limit random values between 0 and limit."
iterable = PROGRESS(xrange(int(limit * fraction)), 'randvalues')
return [random.randrange(limit) for each in iterable]
def randindices(limit, fraction=0.002):
"Return fraction of limit random indices counting down from limit."
stop = limit - int(limit * fraction)
iterable = PROGRESS(xrange(limit, stop, -1), 'randindices')
return [random.randrange(length) for length in iterable]
def benchmark_add(start, limit, times):
"""Benchmark sorted list add method.
Start and limit are an inclusive range of magnitudes.
The load of the sorted list is the cube root of the size.
Measurements are made by sampling performance at each "moment" of a sorted
list while items are added to it. See `init_sorted_list` for how "moment"
is used.
"""
for exponent in xrange(start, limit + 1):
timings = []
count = 10 ** exponent
sl = sc.SortedList(load=int(count ** (1.0 / 3)))
for attempt in xrange(times):
subtimings = []
for moment in xrange(10):
values = randvalues(count)
init_sorted_list(sl, count, moment)
gc.collect()
subtiming = add(sl, values)
subtimings.append(subtiming)
timing = sum(subtimings)
timings.append(timing)
display('add', timings, count)
def benchmark_del(start, limit, times):
"""Benchmark sorted list delitem method.
Start and limit are an inclusive range of magnitudes.
The load of the sorted list is the square root of the size.
Measurements are made by sampling performance at each "moment" of a sorted
list while items are deleted from it. See `init_sorted_list` for how
"moment" is used.
"""
for exponent in xrange(start, limit + 1):
timings = []
count = 10 ** exponent
sl = sc.SortedList(load=int(count ** (1.0 / 3))) # 2)))
for attempt in xrange(times):
subtimings = []
for moment in xrange(-5, 0):
indices = randindices(count)
init_sorted_list(sl, count, moment)
gc.collect()
subtiming = delitem(sl, indices)
subtimings.append(subtiming)
timing = sum(subtimings)
timings.append(timing)
display('del', timings, count)
def display(name, times, size, last=['', 0]):
"Display performance summary with ratio of ops/sec."
times.sort()
median_time = times[len(times) / 2]
operations = size / 100
ops_sec = operations / median_time
last_name, last_ops_sec = last
ratio = last_ops_sec / ops_sec if name == last_name else float('nan')
last[0], last[1] = name, ops_sec
template = '@%9s %.0e %.0e %14.5f %12.3f %6.3f'
print(template % (name, size, operations, median_time, ops_sec, ratio))
sys.stdout.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--start', default=1e6, type=float)
parser.add_argument('--limit', default=1e10, type=float)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--times', default=5, type=int)
parser.add_argument('--funcs', default='all', choices=['all', 'add', 'del'])
parser.add_argument('--progress', action='store_true')
parser.add_argument('--check', action='store_true')
args = parser.parse_args()
random.seed(args.seed)
if args.progress:
import tqdm
PROGRESS = tqdm.tqdm
CHECK = args.check
start = int(math.log10(args.start))
limit = int(math.log10(args.limit))
template = '@%9s %7s %7s %14s %12s %9s'
header = 'Method', 'Size', 'Ops', 'Time', 'Ops/Sec', 'Ratio'
print(template % header)
sys.stdout.flush()
if args.funcs == 'all':
benchmarks = [benchmark_add, benchmark_del]
elif args.funcs == 'add':
benchmarks = [benchmark_add]
elif args.funcs == 'del':
benchmarks = [benchmark_del]
else:
raise ValueError(args.funcs)
for benchmark in benchmarks:
benchmark(start, limit, args.times)
|