1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*
* August 24, 1998
* Copyright (C) 1998 Juergen Mueller And Sundry Contributors
* This source code is freely redistributable and may be used for
* any purpose. This copyright notice must be maintained.
* Juergen Mueller And Sundry Contributors are not responsible for
* the consequences of using this software.
*/
/*
* Echos effect for dsp.
*
* Flow diagram scheme for n delays ( 1 <= n <= MAX_ECHOS ):
*
* * gain-in ___
* ibuff --+--------------------------------------------------->| |
* | * decay 1 | |
* | +----------------------------------->| |
* | | * decay 2 | + |
* | | +--------------------->| |
* | | | * decay n | |
* | _________ | _________ | _________ +--->|___|
* | | | | | | | | | | |
* +-->| delay 1 |-+-| delay 2 |-+...-| delay n |--+ | * gain-out
* |_________| |_________| |_________| |
* +----->obuff
*
* Usage:
* echos gain-in gain-out delay-1 decay-1 [delay-2 decay-2 ... delay-n decay-n]
*
* Where:
* gain-in, decay-1 ... decay-n : 0.0 ... 1.0 volume
* gain-out : 0.0 ... volume
* delay-1 ... delay-n : > 0.0 msec
*
* Note:
* when decay is close to 1.0, the samples can begin clipping and the output
* can saturate!
*
* Hint:
* 1 / out-gain > gain-in ( 1 + decay-1 + ... + decay-n )
*
*/
/*
* Sound Tools reverb effect file.
*/
#include <stdlib.h> /* Harmless, and prototypes atof() etc. --dgc */
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#include <math.h>
#include "st.h"
#define DELAY_BUFSIZ ( 50L * MAXRATE )
#define MAX_ECHOS 7 /* 24 bit x ( 1 + MAX_ECHOS ) = */
/* 24 bit x 8 = 32 bit !!! */
/* Private data for SKEL file */
typedef struct echosstuff {
int counter[MAX_ECHOS];
int num_delays;
double *delay_buf;
float in_gain, out_gain;
float delay[MAX_ECHOS], decay[MAX_ECHOS];
long samples[MAX_ECHOS], pointer[MAX_ECHOS], sumsamples;
} *echos_t;
/* Private data for SKEL file */
/* If we are not carefull with the output volume */
LONG echos_clip24(l)
LONG l;
{
if (l >= ((LONG)1 << 24))
return ((LONG)1 << 24) - 1;
else if (l <= -((LONG)1 << 24))
return -((LONG)1 << 24) + 1;
else
return l;
}
/*
* Process options
*/
void echos_getopts(effp, n, argv)
eff_t effp;
int n;
char **argv;
{
echos_t echos = (echos_t) effp->priv;
int i;
echos->num_delays = 0;
if ((n < 4) || (n % 2))
fail("Usage: echos gain-in gain-out delay decay [ delay decay ... ]");
i = 0;
sscanf(argv[i++], "%f", &echos->in_gain);
sscanf(argv[i++], "%f", &echos->out_gain);
while (i < n) {
/* Linux bug and it's cleaner. */
sscanf(argv[i++], "%f", &echos->delay[echos->num_delays]);
sscanf(argv[i++], "%f", &echos->decay[echos->num_delays]);
echos->num_delays++;
if ( echos->num_delays > MAX_ECHOS )
fail("echos: to many delays, use less than %i delays",
MAX_ECHOS);
}
echos->sumsamples = 0;
}
/*
* Prepare for processing.
*/
void echos_start(effp)
eff_t effp;
{
echos_t echos = (echos_t) effp->priv;
int i;
float sum_in_volume;
long j;
if ( echos->in_gain < 0.0 )
fail("echos: gain-in must be positive!\n");
if ( echos->in_gain > 1.0 )
fail("echos: gain-in must be less than 1.0!\n");
if ( echos->out_gain < 0.0 )
fail("echos: gain-in must be positive!\n");
for ( i = 0; i < echos->num_delays; i++ ) {
echos->samples[i] = echos->delay[i] * effp->ininfo.rate / 1000.0;
if ( echos->samples[i] < 1 )
fail("echos: delay must be positive!\n");
if ( echos->samples[i] > DELAY_BUFSIZ )
fail("echos: delay must be less than %g seconds!\n",
DELAY_BUFSIZ / (float) effp->ininfo.rate );
if ( echos->decay[i] < 0.0 )
fail("echos: decay must be positive!\n" );
if ( echos->decay[i] > 1.0 )
fail("echos: decay must be less than 1.0!\n" );
echos->counter[i] = 0;
echos->pointer[i] = echos->sumsamples;
echos->sumsamples += echos->samples[i];
}
if (! (echos->delay_buf = (double *) malloc(sizeof (double) * echos->sumsamples)))
fail("echos: Cannot malloc %d bytes!\n",
sizeof(long) * echos->sumsamples);
for ( j = 0; j < echos->samples[i]; ++j )
echos->delay_buf[j] = 0.0;
/* Be nice and check the hint with warning, if... */
sum_in_volume = 1.0;
for ( i = 0; i < echos->num_delays; i++ )
sum_in_volume += echos->decay[i];
if ( sum_in_volume * echos->in_gain > 1.0 / echos->out_gain )
warn("echos: warning >>> gain-out can cause saturation of output <<<");
}
/*
* Processed signed long samples from ibuf to obuf.
* Return number of samples processed.
*/
void echos_flow(effp, ibuf, obuf, isamp, osamp)
eff_t effp;
LONG *ibuf, *obuf;
int *isamp, *osamp;
{
echos_t echos = (echos_t) effp->priv;
int len, done;
int j;
double d_in, d_out;
LONG out;
len = ((*isamp > *osamp) ? *osamp : *isamp);
for(done = 0; done < len; done++) {
/* Store delays as 24-bit signed longs */
d_in = (double) *ibuf++ / 256;
/* Compute output first */
d_out = d_in * echos->in_gain;
for ( j = 0; j < echos->num_delays; j++ ) {
d_out += echos->delay_buf[echos->counter[j] + echos->pointer[j]] * echos->decay[j];
}
/* Adjust the output volume and size to 24 bit */
d_out = d_out * echos->out_gain;
out = echos_clip24((LONG) d_out);
*obuf++ = out * 256;
/* Mix decay of delays and input */
for ( j = 0; j < echos->num_delays; j++ ) {
if ( j == 0 )
echos->delay_buf[echos->counter[j] + echos->pointer[j]] = d_in;
else
echos->delay_buf[echos->counter[j] + echos->pointer[j]] =
echos->delay_buf[echos->counter[j-1] + echos->pointer[j-1]] + d_in;
}
/* Adjust the counters */
for ( j = 0; j < echos->num_delays; j++ )
echos->counter[j] =
( echos->counter[j] + 1 ) % echos->samples[j];
}
/* processed all samples */
}
/*
* Drain out reverb lines.
*/
void echos_drain(effp, obuf, osamp)
eff_t effp;
LONG *obuf;
int *osamp;
{
echos_t echos = (echos_t) effp->priv;
double d_in, d_out;
LONG out;
int j;
long done;
done = 0;
/* drain out delay samples */
while ( ( done < *osamp ) && ( done < echos->sumsamples ) ) {
d_in = 0;
d_out = 0;
for ( j = 0; j < echos->num_delays; j++ ) {
d_out += echos->delay_buf[echos->counter[j] + echos->pointer[j]] * echos->decay[j];
}
/* Adjust the output volume and size to 24 bit */
d_out = d_out * echos->out_gain;
out = echos_clip24((LONG) d_out);
*obuf++ = out * 256;
/* Mix decay of delays and input */
for ( j = 0; j < echos->num_delays; j++ ) {
if ( j == 0 )
echos->delay_buf[echos->counter[j] + echos->pointer[j]] = d_in;
else
echos->delay_buf[echos->counter[j] + echos->pointer[j]] =
echos->delay_buf[echos->counter[j-1] + echos->pointer[j-1]];
}
/* Adjust the counters */
for ( j = 0; j < echos->num_delays; j++ )
echos->counter[j] =
( echos->counter[j] + 1 ) % echos->samples[j];
done++;
echos->sumsamples--;
};
/* samples played, it remains */
*osamp = done;
}
/*
* Clean up reverb effect.
*/
void echos_stop(effp)
eff_t effp;
{
echos_t echos = (echos_t) effp->priv;
free((char *) echos->delay_buf);
echos->delay_buf = (double *) -1; /* guaranteed core dump */
}
|