1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /cvsroot/sox/sox/libgsm/add.c,v 1.1 2007/09/06 16:50:55 cbagwell Exp $ */
/*
* See private.h for the more commonly used macro versions.
*/
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#define saturate(x) \
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
word gsm_add (word a, word b)
{
longword sum = (longword)a + (longword)b;
return saturate(sum);
}
word gsm_sub (word a, word b)
{
longword diff = (longword)a - (longword)b;
return saturate(diff);
}
word gsm_mult (word a, word b)
{
if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
else return SASR( (longword)a * (longword)b, 15 );
}
word gsm_mult_r (word a, word b)
{
if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
else {
longword prod = (longword)a * (longword)b + 16384;
prod >>= 15;
return prod & 0xFFFF;
}
}
word gsm_abs (word a)
{
return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}
longword gsm_L_mult (word a, word b)
{
assert( a != MIN_WORD || b != MIN_WORD );
return ((longword)a * (longword)b) << 1;
}
longword gsm_L_add (longword a, longword b)
{
if (a < 0) {
if (b >= 0) return a + b;
else {
ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
}
}
else if (b <= 0) return a + b;
else {
ulongword A = (ulongword)a + (ulongword)b;
return A > MAX_LONGWORD ? MAX_LONGWORD : A;
}
}
longword gsm_L_sub (longword a, longword b)
{
if (a >= 0) {
if (b >= 0) return a - b;
else {
/* a>=0, b<0 */
ulongword A = (ulongword)a + -(b + 1);
return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
}
}
else if (b <= 0) return a - b;
else {
/* a<0, b>0 */
ulongword A = (ulongword)-(a + 1) + b;
return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
}
}
static unsigned char const bitoff[ 256 ] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
word gsm_norm (longword a )
/*
* the number of left shifts needed to normalize the 32 bit
* variable L_var1 for positive values on the interval
*
* with minimum of
* minimum of 1073741824 (01000000000000000000000000000000) and
* maximum of 2147483647 (01111111111111111111111111111111)
*
*
* and for negative values on the interval with
* minimum of -2147483648 (-10000000000000000000000000000000) and
* maximum of -1073741824 ( -1000000000000000000000000000000).
*
* in order to normalize the result, the following
* operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
*
* (That's 'ffs', only from the left, not the right..)
*/
{
assert(a != 0);
if (a < 0) {
if (a <= -1073741824) return 0;
a = ~a;
}
return a & 0xffff0000
? ( a & 0xff000000
? -1 + bitoff[ 0xFF & (a >> 24) ]
: 7 + bitoff[ 0xFF & (a >> 16) ] )
: ( a & 0xff00
? 15 + bitoff[ 0xFF & (a >> 8) ]
: 23 + bitoff[ 0xFF & a ] );
}
longword gsm_L_asl (longword a, int n)
{
if (n >= 32) return 0;
if (n <= -32) return -(a < 0);
if (n < 0) return gsm_L_asr(a, -n);
return a << n;
}
word gsm_asl (word a, int n)
{
if (n >= 16) return 0;
if (n <= -16) return -(a < 0);
if (n < 0) return gsm_asr(a, -n);
return a << n;
}
longword gsm_L_asr (longword a, int n)
{
if (n >= 32) return -(a < 0);
if (n <= -32) return 0;
if (n < 0) return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0) return a >> n;
else return -(longword)( -(ulongword)a >> n );
# endif
}
word gsm_asr (word a, int n)
{
if (n >= 16) return -(a < 0);
if (n <= -16) return 0;
if (n < 0) return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0) return a >> n;
else return -(word)( -(uword)a >> n );
# endif
}
/*
* (From p. 46, end of section 4.2.5)
*
* NOTE: The following lines gives [sic] one correct implementation
* of the div(num, denum) arithmetic operation. Compute div
* which is the integer division of num by denum: with denum
* >= num > 0
*/
word gsm_div (word num, word denum)
{
longword L_num = num;
longword L_denum = denum;
word div = 0;
int k = 15;
/* The parameter num sometimes becomes zero.
* Although this is explicitly guarded against in 4.2.5,
* we assume that the result should then be zero as well.
*/
/* assert(num != 0); */
assert(num >= 0 && denum >= num);
if (num == 0)
return 0;
while (k--) {
div <<= 1;
L_num <<= 1;
if (L_num >= L_denum) {
L_num -= L_denum;
div++;
}
}
return div;
}
|