1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/*
* Revision 1.1 1996/08/19 22:32:00 jaf
* Initial revision
*
*/
/* -- translated by f2c (version 19951025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
extern int invert_(integer *order, real *phi, real *psi, real *rc);
/* **************************************************************** */
/* INVERT Version 45G */
/*
* Revision 1.1 1996/08/19 22:32:00 jaf
* Initial revision
* */
/* Revision 1.3 1996/03/18 20:52:47 jaf */
/* Just added a few comments about which array indices of the arguments */
/* are used, and mentioning that this subroutine has no local state. */
/* Revision 1.2 1996/03/13 16:51:32 jaf */
/* Comments added explaining that none of the local variables of this */
/* subroutine need to be saved from one invocation to the next. */
/* Eliminated a comment from the original, describing a local array X */
/* that appeared nowhere in the code. */
/* Revision 1.1 1996/02/07 14:47:20 jaf */
/* Initial revision */
/* **************************************************************** */
/* Invert a covariance matrix using Choleski decomposition method. */
/* Input: */
/* ORDER - Analysis order */
/* PHI(ORDER,ORDER) - Covariance matrix */
/* Indices (I,J) read, where ORDER .GE. I .GE. J .GE. 1.*/
/* All other indices untouched. */
/* PSI(ORDER) - Column vector to be predicted */
/* Indices 1 through ORDER read. */
/* Output: */
/* RC(ORDER) - Pseudo reflection coefficients */
/* Indices 1 through ORDER written, and then possibly read.
*/
/* Internal: */
/* V(ORDER,ORDER) - Temporary matrix */
/* Same indices written as read from PHI. */
/* Many indices may be read and written again after */
/* initially being copied from PHI, but all indices */
/* are written before being read. */
/* NOTE: Temporary matrix V is not needed and may be replaced */
/* by PHI if the original PHI values do not need to be preserved. */
/* Subroutine */ int invert_(integer *order, real *phi, real *psi, real *rc)
{
/* System generated locals */
integer phi_dim1, phi_offset, i__1, i__2, i__3;
real r__1, r__2;
/* Local variables */
real save;
integer i__, j, k;
real v[100] /* was [10][10] */;
/* Arguments */
/* LPC Configuration parameters: */
/* Frame size, Prediction order, Pitch period */
/* Parameters/constants */
/* Local variables that need not be saved */
/* Decompose PHI into V * D * V' where V is a triangular matrix whose */
/* main diagonal elements are all 1, V' is the transpose of V, and */
/* D is a vector. Here D(n) is stored in location V(n,n). */
/* Parameter adjustments */
--rc;
--psi;
phi_dim1 = *order;
phi_offset = phi_dim1 + 1;
phi -= phi_offset;
/* Function Body */
i__1 = *order;
for (j = 1; j <= i__1; ++j) {
i__2 = *order;
for (i__ = j; i__ <= i__2; ++i__) {
v[i__ + j * 10 - 11] = phi[i__ + j * phi_dim1];
}
i__2 = j - 1;
for (k = 1; k <= i__2; ++k) {
save = v[j + k * 10 - 11] * v[k + k * 10 - 11];
i__3 = *order;
for (i__ = j; i__ <= i__3; ++i__) {
v[i__ + j * 10 - 11] -= v[i__ + k * 10 - 11] * save;
}
}
/* Compute intermediate results, which are similar to RC's */
if ((r__1 = v[j + j * 10 - 11], abs(r__1)) < 1e-10f) {
goto L100;
}
rc[j] = psi[j];
i__2 = j - 1;
for (k = 1; k <= i__2; ++k) {
rc[j] -= rc[k] * v[j + k * 10 - 11];
}
v[j + j * 10 - 11] = 1.f / v[j + j * 10 - 11];
rc[j] *= v[j + j * 10 - 11];
/* Computing MAX */
/* Computing MIN */
r__2 = rc[j];
r__1 = min(r__2,.999f);
rc[j] = max(r__1,-.999f);
}
return 0;
/* Zero out higher order RC's if algorithm terminated early */
L100:
i__1 = *order;
for (i__ = j; i__ <= i__1; ++i__) {
rc[i__] = 0.f;
}
/* Back substitute for PC's (if needed) */
/* 110 DO J = ORDER,1,-1 */
/* PC(J) = RC(J) */
/* DO I = 1,J-1 */
/* PC(J) = PC(J) - PC(I)*V(J,I) */
/* END DO */
/* END DO */
return 0;
} /* invert_ */
|