File: sox.1

package info (click to toggle)
sox 14.4.2%2Bgit20190427-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 7,104 kB
  • sloc: ansic: 43,278; sh: 11,693; makefile: 339
file content (4255 lines) | stat: -rw-r--r-- 149,533 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
'\" t
'\" The line above instructs most `man' programs to invoke tbl
'\"
'\" Separate paragraphs; not the same as PP which resets indent level.
.de SP
.if t .sp .5
.if n .sp
..
'\"
'\" Replacement em-dash for nroff (default is too short).
.ie n .ds m " - 
.el .ds m \(em
'\"
'\" Placeholder macro for if longer nroff arrow is needed.
.ds RA \(->
'\"
'\" Decimal point set slightly raised
.if t .ds d \v'-.15m'.\v'+.15m'
.if n .ds d .
'\"
'\" Enclosure macro for examples
.de EX
.SP
.nf
.ft CW
..
.de EE
.ft R
.SP
.fi
..
.TH SoX 1 "December 31, 2014" "sox" "Sound eXchange"
.SH NAME
SoX \- Sound eXchange, the Swiss Army knife of audio manipulation
.SH SYNOPSIS
.nf
\fBsox\fR [\fIglobal-options\fR] [\fIformat-options\fR] \fIinfile1\fR
	[[\fIformat-options\fR] \fIinfile2\fR] ... [\fIformat-options\fR] \fIoutfile\fR
	[\fIeffect\fR [\fIeffect-options\fR]] ...
.SP
\fBplay\fR [\fIglobal-options\fR] [\fIformat-options\fR] \fIinfile1\fR
	[[\fIformat-options\fR] \fIinfile2\fR] ... [\fIformat-options\fR]
	[\fIeffect\fR [\fIeffect-options\fR]] ...
.SP
\fBrec\fR [\fIglobal-options\fR] [\fIformat-options\fR] \fIoutfile\fR
	[\fIeffect\fR [\fIeffect-options\fR]] ...
.fi
.SH DESCRIPTION
.SS Introduction
SoX reads and writes audio files in most popular formats and can
optionally apply effects to them. It can combine multiple input
sources, synthesise audio, and, on many systems, act as a general
purpose audio player or a multi-track audio recorder. It also has
limited ability to split the input into multiple output files.
.SP
All SoX functionality is available using just the \fBsox\fR command.
To simplify playing and recording audio, if SoX is invoked as
\fBplay\fR, the output file is automatically set to be the default sound
device, and if invoked as \fBrec\fR, the default sound device is used as an
input source.
Additionally, the
.BR soxi (1)
command provides a convenient way to just query audio file header information.
.SP
The heart of SoX is a library called libSoX.  Those interested in
extending SoX or using it in other programs should refer to the libSoX
manual page:
.BR libsox (3).
.SP
SoX is a command-line audio processing tool, particularly suited to making
quick, simple edits and to batch processing.
If you need an interactive, graphical audio editor, use
.BR audacity (1).
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
The overall SoX processing chain can be summarised as follows:
.TS
center;
l.
Input(s) \*(RA Combiner \*(RA Effects \*(RA Output(s)
.TE
.DT
.SP
Note however, that on the SoX command line, the positions of the
Output(s) and the Effects are swapped w.r.t. the logical flow just
shown.  Note also that whilst options pertaining to files are placed
before their respective file name, the opposite is true for effects.
To show how this works in practice, here is a selection of examples of
how SoX might be used.  The simple
.EX
   sox recital.au recital.wav
.EE
translates an audio file in Sun AU format to a Microsoft WAV file, whilst
.EX
   sox recital.au \-b 16 recital.wav channels 1 rate 16k fade 3 norm
.EE
performs the same format translation, but also applies four effects
(down-mix to one channel, sample rate change, fade-in, nomalize),
and stores the result at a bit-depth of 16.
.EX
   sox \-r 16k \-e signed \-b 8 \-c 1 voice-memo.raw voice-memo.wav
.EE
converts `raw' (a.k.a. `headerless') audio to a self-describing file format,
.EX
   sox slow.aiff fixed.aiff speed 1.027
.EE
adjusts audio speed,
.EX
   sox short.wav long.wav longer.wav
.EE
concatenates two audio files, and
.EX
   sox \-m music.mp3 voice.wav mixed.flac
.EE
mixes together two audio files.
.EX
   play \(dqThe Moonbeams/Greatest/*.ogg\(dq bass +3
.EE
plays a collection of audio files whilst applying a bass boosting effect,
.EX
   play \-n \-c1 synth sin %\-12 sin %\-9 sin %\-5 sin %\-2 fade h 0.1 1 0.1
.EE
plays a synthesised `A minor seventh' chord with a pipe-organ sound,
.EX
   rec \-c 2 radio.aiff trim 0 30:00
.EE
records half an hour of stereo audio, and
.EX
   play \-q take1.aiff & rec \-M take1.aiff take1\-dub.aiff
.EE
(with POSIX shell and where supported by hardware)
records a new track in a multi-track recording.  Finally,
.EX
.ne 3
   rec \-r 44100 \-b 16 \-e signed-integer \-p \\
	silence 1 0.50 0.1% 1 10:00 0.1% | \\
	sox \-p song.ogg silence 1 0.50 0.1% 1 2.0 0.1% : \\
	newfile : restart
.EE
records a stream of audio such as LP/cassette and splits in to multiple
audio files at points with 2 seconds of silence.  Also, it does not start
recording until it detects audio is playing and stops after it sees
10 minutes of silence.
.SP
N.B.  The above is just an overview of SoX's capabilities; detailed
explanations of how to use \fIall\fR SoX parameters, file formats, and
effects can be found below in this manual, in
.BR soxformat (7),
and in
.BR soxi (1).
.SS File Format Types
SoX can work with `self-describing' and `raw' audio files.
`self-describing' formats (e.g. WAV, FLAC, MP3) have a header that
completely describes the signal and encoding attributes of the audio
data that follows. `raw' or `headerless' formats do not contain this
information, so the audio characteristics of these must be described
on the SoX command line or inferred from those of the input file.
.SP
The following four characteristics are used to describe the format of
audio data such that it can be processed with SoX:
.TP
sample rate
The sample rate in samples per second (`Hertz' or `Hz').
Digital telephony traditionally uses a sample rate of 8000\ Hz (8\ kHz),
though these days, 16 and even 32\ kHz are becoming more common. Audio
Compact Discs use 44100\ Hz (44\*d1\ kHz). Digital Audio Tape and many
computer systems use 48\ kHz. Professional audio systems often use 96
kHz.
.TP
sample size
The number of bits used to store each sample.  Today, 16-bit is
commonly used. 8-bit was popular in the early days of computer
audio. 24-bit is used in the professional audio arena. Other sizes are
also used.
.TP
data encoding
The way in which each audio sample is represented (or `encoded').  Some
encodings have variants with different byte-orderings or bit-orderings.
Some compress the audio data so that the stored audio data takes up less
space (i.e. disk space or transmission bandwidth) than the other format
parameters and the number of samples would imply.  Commonly-used
encoding types include floating-point, \(*m-law, ADPCM, signed-integer
PCM, MP3, and FLAC.
.TP
channels
The number of audio channels contained in the file.  One (`mono') and
two (`stereo') are widely used.  `Surround sound' audio typically
contains six or more channels.
.PP
The term `bit-rate' is a measure of the amount of storage occupied by an
encoded audio signal over a unit of time.  It can depend on all of the
above and is typically denoted as a number of kilo-bits per second
(kbps).  An A-law telephony signal has a bit-rate of 64 kbps. MP3-encoded
stereo music typically has a bit-rate of 128\-196 kbps. FLAC-encoded
stereo music typically has a bit-rate of 550\-760 kbps.
.SP
Most self-describing formats also allow textual `comments' to be
embedded in the file that can be used to describe the audio in some way,
e.g. for music, the title, the author, etc.
.SP
One important use of audio file comments is to convey `Replay Gain'
information.  SoX supports applying Replay Gain information (for certain
input file formats only; currently, at least FLAC and Ogg Vorbis), but not
generating it.  Note that by default, SoX copies input file comments
to output files that support comments, so output files may contain
Replay Gain information if some was present in the input file.  In this
case, if anything other than a simple format conversion was performed
then the output file Replay Gain information is likely to be incorrect
and so should be recalculated using a tool that supports this (not SoX).
.SP
The
.BR soxi (1)
command can be used to display information from audio file headers.
.SS Determining & Setting The File Format
There are several mechanisms available for SoX to use to determine or set the
format characteristics of an audio file.  Depending on the circumstances,
individual characteristics may be determined or set using different mechanisms.
.SP
To determine the format of an input file, SoX will use, in order of
precedence and as given or available:
.IP 1. 4
Command-line format options.
.IP 2. 4
The contents of the file header.
.IP 3. 4
The filename extension.
.PP
To set the output file format, SoX will use, in order of
precedence and as given or available:
.IP 1. 4
Command-line format options.
.IP 2. 4
The filename extension.
.IP 3. 4
The input file format characteristics, or the closest
that is supported by the output file type.
.PP
For all files, SoX will exit with an error
if the file type cannot be determined. Command-line format options may
need to be added or changed to resolve the problem.
.SS Playing & Recording Audio
The
.B play
and
.B rec
commands are provided so that basic playing and
recording is as simple as
.EX
   play existing-file.wav
.EE
and
.EX
   rec new-file.wav
.EE
These two commands are functionally equivalent to
.EX
   sox existing-file.wav \-d
.EE
and
.EX
   sox \-d new-file.wav
.EE
Of course, further options and effects (as described below) can be
added to the commands in either form.
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
Some systems provide more than one type of (SoX-compatible) audio
driver, e.g. ALSA & OSS, or SUNAU & AO.
Systems can also have more than one audio device (a.k.a. `sound card').
If more than one audio driver has been
built-in to SoX, and the default selected by SoX when recording or playing
is not the one that is wanted, then the
.B AUDIODRIVER
environment variable can be used to override the default.  For example
(on many systems):
.EX
   set AUDIODRIVER=oss
   play ...
.EE
The
.B AUDIODEV
environment variable can be used to override the default audio device,
e.g.
.EX
   set AUDIODEV=/dev/dsp2
   play ...
   sox ... \-t oss
.EE
or
.EX
   set AUDIODEV=hw:soundwave,1,2
   play ...
   sox ... \-t alsa
.EE
Note that the way of setting environment variables varies from system
to system\*mfor some specific examples, see `SOX_OPTS' below.
.SP
When playing a file with a sample rate that is not supported by the
audio output device, SoX will automatically invoke the \fBrate\fR effect
to perform the necessary sample rate conversion.  For
compatibility with old hardware, the
default \fBrate\fR quality level is set to `low'. This
can be changed by explicitly specifying the \fBrate\fR
effect with a different quality level, e.g.
.EX
   play ... rate \-m
.EE
or by using the
.B \-\-play\-rate\-arg
option (see below).
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
On some systems, SoX allows audio playback volume to be adjusted whilst
using
.BR play .
Where supported, this is achieved by tapping the `v' & `V' keys during
playback.
.SP
To help with setting a suitable recording level, SoX includes a peak-level
meter which can be invoked (before making the actual recording) as follows:
.EX
   rec \-n
.EE
The recording level should be adjusted (using the system-provided mixer
program, not SoX) so that the meter is \fIat most occasionally\fR full
scale, and never `in the red' (an exclamation mark is shown).
See also \fB\-S\fR below.
.SS Accuracy
Many file formats that compress audio discard some of the audio signal
information whilst doing so. Converting to such a format and then converting
back again will not produce an exact copy of the original audio.  This
is the case for many formats used in telephony (e.g. A-law, GSM) where
low signal bandwidth is more important than high audio fidelity, and for
many formats used in portable music players (e.g. MP3, Vorbis) where
adequate fidelity can be retained even with the large compression ratios
that are needed to make portable players practical.
.SP
Formats that discard audio signal information are called `lossy'.
Formats that do not are called `lossless'.  The term `quality' is used as a
measure of how closely the original audio signal can be reproduced when
using a lossy format.
.SP
Audio file conversion with SoX is lossless when it can be, i.e. when not
using lossy compression, when not reducing the sampling rate or number
of channels, and when the number of bits used in the destination format
is not less than in the source format.  E.g.  converting from an 8-bit
PCM format to a 16-bit PCM format is lossless but converting from an
8-bit PCM format to (8-bit) A-law isn't.
.SP
.B N.B.
SoX converts all audio files to an internal uncompressed
format before performing any audio processing. This means that
manipulating a file that is stored in a lossy format can cause further
losses in audio fidelity.  E.g. with
.EX
   sox long.mp3 short.mp3 trim 10
.EE
SoX first decompresses the input MP3 file, then applies the
.B trim
effect, and finally creates the output MP3 file by re-compressing the
audio\*mwith a possible reduction in fidelity above that which
occurred when the input file was created.
Hence, if what is ultimately desired is lossily compressed audio, it is
highly recommended to perform all audio processing using lossless file
formats and then convert to the lossy format only at the final stage.
.SP
.B N.B.
Applying multiple effects with a single SoX invocation will,
in general, produce more accurate results than those produced using
multiple SoX invocations.
.SS Dithering
Dithering is a technique used to maximise the dynamic range of audio
stored at a particular bit-depth. Any distortion introduced by
quantisation is decorrelated by adding a small amount of white noise
to the signal.  In most cases, SoX can determine whether the selected
processing requires dither and will add it during output formatting if
appropriate.
.SP
Specifically, by default, SoX automatically adds TPDF dither
when the output bit-depth is less than 24 and any
of the following are true:
.IP \(bu 4
bit-depth reduction has been specified explicitly using a command-line
option
.IP \(bu 4
the output file format supports only bit-depths lower than that of the
input file format
.IP \(bu 4
an effect has increased effective bit-depth within the internal
processing chain
.PP
For example, adjusting volume with
.B vol 0.25
requires two additional bits in which to losslessly store its results
(since 0\*d25 decimal equals 0\*d01 binary).  So if the input file
bit-depth is 16, then SoX's internal representation will utilise 18
bits after processing this volume change.  In order to store the
output at the same depth as the input, dithering is used to remove the
additional bits.
.SP
Use the
.B \-V
option to see what processing SoX has automatically added. The
.B \-D
option may be given to override automatic dithering.  To invoke
dithering manually (e.g. to select a noise-shaping curve), see the
.B dither
effect.
.SS Clipping
Clipping is distortion that occurs when an audio signal level (or
`volume') exceeds the range of the chosen representation.  In most
cases, clipping is undesirable and so should be corrected by adjusting
the level prior to the point (in the processing chain) at which it
occurs.
.SP
In SoX, clipping could occur, as you might expect, when using the
.B vol
or
.B gain
effects to increase the audio volume. Clipping could also occur with many
other effects, when converting one format to another, and even when
simply playing the audio.
.SP
Playing an audio file often involves resampling, and processing by
analogue components can introduce a small DC offset and/or
amplification, all of which can produce distortion if the audio signal
level was initially too close to the clipping point.
.SP
For these reasons, it is usual to make sure that an audio
file's signal level has some `headroom', i.e. it does not exceed a particular
level below the maximum possible level for the given representation.
Some standards bodies recommend as much as 9dB headroom, but in most cases,
3dB (\(~~ 70% linear) is enough.  Note that this wisdom
seems to have been lost in modern music production; in fact, many CDs,
MP3s, etc.  are now mastered at levels \fIabove\fR 0dBFS i.e. the
audio is clipped as delivered.
.SP
SoX's
.B stat
and
.B stats
effects can assist in determining the signal level in an audio file. The
.B gain
or
.B vol
effect can be used to prevent clipping, e.g.
.EX
   sox dull.wav bright.wav gain \-6 treble +6
.EE
guarantees that the treble boost will not clip.
.SP
If clipping occurs at any point during processing,
SoX will display a warning message to that effect.
.SP
See also
.B \-G
and the
.B gain
and
.B norm
effects.
.SS Input File Combining
SoX's input combiner can be configured (see OPTIONS below) to
combine multiple files using any of the
following methods: `concatenate', `sequence', `mix', `mix-power',
`merge', or `multiply'.
The default method is `sequence' for
.BR play ,
and `concatenate' for
.B rec
and
.BR sox .
.SP
For all methods other than `sequence', multiple input files must have
the same sampling rate. If necessary, separate SoX invocations can be
used to make sampling rate adjustments prior to combining.
.SP
If the `concatenate' combining method is selected (usually, this will be
by default) then the input files must also have the same number of
channels.  The audio from each input will be concatenated in the order
given to form the output file.
.SP
The `sequence' combining method is selected automatically for
.BR play .
It is similar to `concatenate' in that the audio from each input file is
sent serially to the output file. However, here the output file may be
closed and reopened at the corresponding transition between input
files. This may be just what is needed when sending different types of
audio to an output device, but is not generally useful when the output is a
normal file.
.SP
If either the `mix' or `mix-power' combining method is selected then two or
more input files must be given and will be mixed together to form the
output file.  The number of channels in each input file need not be the
same, but SoX will issue a warning if they are not and some
channels in the output file will not contain audio from every input
file.  A mixed audio file cannot be un-mixed without reference to the
original input files.
.SP
If the `merge' combining method is selected then two or
more input files must be given and will be merged together to form the
output file.  The number of channels in each input file need not be the
same.  A merged audio file comprises all of the channels from all of the
input files. Un-merging is possible using multiple
invocations of SoX with the
.B remix
effect.
For example, two mono files could be merged to form one stereo file. The
first and second mono files would become the left and right channels of
the stereo file.
.SP
The `multiply' combining method multiplies the sample values of
corresponding channels (treated as numbers in the interval \-1 to +1).
If the number of channels in the input files is not the same, the
missing channels are considered to contain all zero.
.SP
When combining input files, SoX applies any specified effects
(including, for example, the
.B vol
volume adjustment effect) after the audio has been combined. However, it
is often useful to be able to set the volume of (i.e. `balance') the
inputs individually, before combining takes place.
.SP
For all combining methods, input
file volume adjustments can be made manually using the
.B \-v
option (below) which can be given for one or more input files. If it is
given for only some of the input files then the others receive no volume
adjustment.  In some circumstances, automatic volume
adjustments may be applied (see below).
.SP
The \fB\-V\fR option (below) can be used to show the input file volume
adjustments that have been selected (either manually or automatically).
.SP
There are some special considerations that need to made when mixing
input files:
.SP
Unlike the other methods, `mix' combining has the
potential to cause clipping in the combiner if no balancing is
performed.  In this case, if manual volume adjustments are not given,
SoX will try to ensure that clipping does not occur by automatically
adjusting the
volume (amplitude) of each input signal by a factor of \(S1/\s-2n\s+2,
where n is the number of input files.  If this results in audio that is
too quiet or otherwise unbalanced then the input file volumes can be
set manually as described above. Using the
.B norm
effect on the mix is another alternative.
.SP
If mixed audio seems loud enough at some points but
too quiet in others then dynamic range compression should be applied to
correct this\*msee the
.B compand
effect.
.SP
With the `mix-power' combine method, the
mixed volume is approximately equal to that of one of the input signals.
This is achieved by balancing using a factor of
\(S1/\s-2\(srn\s+2 instead of \(S1/\s-2n\s+2.
Note that this balancing factor does not guarantee that clipping will not occur,
but the number of clips will usually be low and the resultant
distortion is generally imperceptible.
.SS Output Files
SoX's default behaviour is to take one or more input files and
write them to a single output file.

This behaviour can be changed by specifying the pseudo-effect `newfile'
within the effects list.  SoX will then enter multiple output mode.

In multiple output mode, a new file is created when the effects
prior to the `newfile' indicate they are done.
The effects chain listed after `newfile'
is then started up and its output is saved to the new file.

In multiple output mode, a unique number will automatically be appended
to the end of all filenames.  If the filename has an extension
then the number is inserted before the extension.  This behaviour can
be customized by placing a %n anywhere in the filename where the
number should be substituted.  An optional number can be placed after
the % to indicate a minimum fixed width for the number.

Multiple output mode is not very useful unless an effect that will
stop the effects chain early is
specified before the `newfile'. If end of file is
reached before the effects chain stops itself then no new file
will be created as it would be empty.

The following is an example of splitting the first 60 seconds of an input
file into two 30 second files and ignoring the rest.
.EX
   sox song.wav ringtone%1n.wav trim 0 30 : newfile : trim 0 30
.SS Stopping SoX
Usually SoX will complete its processing and exit automatically once
it has read all available audio data from the input files.
.SP
If desired, it can be terminated earlier by sending an
interrupt signal to the process (usually by pressing the
keyboard interrupt key which is normally Ctrl-C).  This is a natural requirement
in some circumstances, e.g. when using SoX to make a recording.  Note
that when using SoX to play multiple files, Ctrl-C behaves slightly
differently: pressing it once causes SoX to skip to the next file;
pressing it twice in quick succession causes SoX to exit.
.SP
Another option to stop processing early is to use an effect that
has a time period or sample count to determine the stopping
point. The trim effect is an example of this.  Once all
effects chains have stopped then SoX will also stop.
.SH FILENAMES
Filenames can be simple file names, absolute or relative path names,
or URLs (input files only).  Note that URL support requires that
.BR wget (1)
is available.
.SP
Note:
Giving SoX an input or output filename that is the same as a SoX
effect-name will not work since SoX will treat it as an effect
specification.  The only work-around to this is to avoid such
filenames. This is generally not difficult since most audio
filenames have a filename `extension', whilst effect-names do not.
.SS Special Filenames
The following special filenames may be used in certain circumstances
in place of a normal filename on the command line:
.TP
\fB\-\fR
SoX can be used in simple pipeline operations by using the special
filename `\-' which,
if used as an input filename, will cause
SoX will read audio data from `standard input' (stdin),
and which,
if used as the output filename, will cause
SoX will send audio data to `standard output' (stdout).
Note that when using this option for the output file, and sometimes
when using it for an input file, the file-type (see
.B \-t
below) must also be given.
.TP
\fB\(dq\^|\^\fIprogram \fR[\fIoptions\fR] ...\fB\(dq\fR
This can be used in place of an input filename to specify the
the given program's standard output (stdout) be used as an input file.
Unlike
.B \-
(above), this can be used for several inputs to one SoX command.  For
example, if `genw' generates mono WAV formatted signals to its
standard output, then the following command makes a stereo file
from two generated signals:
.EX
   sox \-M "|genw \-\-imd \-" "|genw \-\-thd \-" out.wav
.EE
For headerless (raw) audio,
.B \-t
(and perhaps other format options) will need to be given, preceding the input
command.
.TP
\fB\(dq\fIwildcard-filename\fB\(dq\fR
Specifies that filename `globbing' (wild-card matching) should be performed
by SoX instead of by the shell.  This allows a single set of file options to be
applied to a group of files.  For example, if the current directory contains
three `vox' files, file1.vox, file2.vox, and file3.vox, then
.EX
   play \-\-rate 6k *.vox
.EE
will be expanded by the `shell' (in most environments) to
.EX
   play \-\-rate 6k file1.vox file2.vox file3.vox
.EE
which will treat only the first vox file as having a sample rate of 6k.
With
.EX
   play \-\-rate 6k "*.vox"
.EE
the given sample rate option will be applied to all three vox files.
.TP
\fB\-p\fR, \fB\-\-sox\-pipe\fR
This can be used in place of an output filename to specify that
the SoX command should be used as in input pipe to another SoX command.
For example, the command:
.EX
   play "|sox \-n \-p synth 2" "|sox \-n \-p synth 2 tremolo 10" stat
.EE
plays two `files' in succession, each with different effects.
.SP
.B \-p
is in fact an alias for `\fB\-t sox \-\fR'.
.TP
\fB\-d\fR, \fB\-\-default\-device\fR
This can be used in place of an input or output filename to specify that
the default audio device (if one has been built into SoX) is to be used.
This is akin to invoking
.B rec
or
.B play
(as described above).
.TP
\fB\-n\fR, \fB\-\-null\fR
This can be used in place of an input or output filename to specify that
a `null file' is to be used.  Note that here, `null file' refers to a
SoX-specific mechanism and is not related to any operating-system
mechanism with a similar name.
.SP
Using a null file to input audio is equivalent to
using a normal audio file that contains an infinite amount
of silence, and as such is not generally useful unless used
with an effect that specifies a finite time length
(such as \fBtrim\fR or \fBsynth\fR).
.SP
Using a null file to output audio amounts to discarding the audio
and is useful mainly with effects that produce information about the
audio instead of affecting it (such as \fBnoiseprof\fR or \fBstat\fR).
.SP
The sampling rate associated with a null file
is by default 48\ kHz, but, as with a normal
file, this can be overridden if desired using command-line format
options (see below).
.SS Supported File & Audio Device Types
See
.BR soxformat (7)
for a list and description of the supported file formats and audio device
drivers.
.SH OPTIONS
.SS Global Options
These options can be specified on the command line at any point
before the first effect name.
.SP
The
.B SOX_OPTS
environment variable can be used to provide alternative default values for
SoX's global options.
For example:
.EX
   SOX_OPTS="\-\-buffer 20000 \-\-play\-rate\-arg \-hs \-\-temp /mnt/temp"
.EE
Note that setting SOX_OPTS can potentially create unwanted changes in
the behaviour of scripts or other programs that invoke SoX.  SOX_OPTS
might best be used for things (such as in the given example) that reflect the
environment in which SoX is being run.  Enabling options such as
.B \-\-no\-clobber
as default might be handled better using a shell alias
since a shell alias will not affect operation in scripts etc.
.SP
One way to ensure that a script cannot be affected by SOX_OPTS is to
clear SOX_OPTS at the start of the script, but this of course loses
the benefit of SOX_OPTS carrying some system-wide default options.  An
alternative approach is to explicitly invoke SoX with default
option values, e.g.
.EX
   SOX_OPTS="\-V \-\-no-clobber"
   ...
   sox \-V2 \-\-clobber $input $output ...
.EE
Note that the way to set environment variables varies from system
to system. Here are some examples:
.SP
Unix bash:
.EX
   export SOX_OPTS="\-V \-\-no-clobber"
.EE
Unix csh:
.EX
   setenv SOX_OPTS "\-V \-\-no-clobber"
.EE
MS-DOS/MS-Windows:
.EX
   set SOX_OPTS=\-V \-\-no-clobber
.EE
MS-Windows GUI: via Control Panel : System : Advanced : Environment
Variables
.SP
Mac OS X GUI: Refer to Apple's Technical Q&A QA1067 document.
.TP
\fB\-\-buffer\fR \fBBYTES\fR, \fB\-\-input\-buffer\fR \fBBYTES\fR
Set the size in bytes of the buffers used for processing audio (default 8192).
.B \-\-buffer
applies to input, effects, and output processing;
.B \-\-input\-buffer
applies only to input processing (for which it overrides
.B \-\-buffer
if both are given).
.SP
Be aware that large values for
.B \-\-buffer
will cause SoX to be become slow to respond to requests to terminate or to skip
the current input file.
.TP
\fB\-\-clobber\fR
Don't prompt before overwriting an existing file with the same name as that
given for the output file.  This is the default behaviour.
.TP
\fB\-\-combine concatenate\fR\^|\^\fBmerge\fR\^|\^\fBmix\fR\^|\^\fBmix\-power\fR\^|\^\fBmultiply\fR\^|\^\fBsequence\fR
Select the input file combining method;
for some of these, short options are available:
.B \-m
selects `mix',
.B \-M
selects `merge', and
.B \-T
selects `multiply'.
.SP
See \fBInput File Combining\fR above for a description of the different
combining methods.
.TP
\fB\-D\fR, \fB\-\-no\-dither\fR
Disable automatic dither\*msee `Dithering' above.  An example of why this
might occasionally be useful is if a file has been converted from 16 to
24 bit with the intention of doing some processing on it, but in fact
no processing is needed after all and the original 16 bit file has
been lost, then, strictly speaking, no dither is needed if converting the
file back to 16 bit.  See also the
.B stats
effect for how to determine the actual bit depth of the audio within a
file.
.TP
\fB\-\-effects\-file \fIFILENAME\fR
Use FILENAME to obtain all effects and their arguments.
The file is parsed as if the values were specified on the
command line.  A new line can be used in place of the special \fB:\fR
marker to separate effect chains.  For convenience, such markers at the
end of the file are normally ignored; if you want to specify an empty
last effects chain, use an explicit \fB:\fR by itself on the last line
of the file.  This option causes any effects specified on the command
line to be discarded.
.TP
\fB\-G\fR, \fB\-\-guard\fR
Automatically invoke the
.B gain
effect to guard against clipping. E.g.
.EX
   sox \-G infile \-b 16 outfile rate 44100 dither \-s
.EE
is shorthand for
.EX
   sox infile \-b 16 outfile gain \-h rate 44100 gain \-rh dither \-s
.EE
See also
.BR \-V,
.BR \-\-norm,
and the
.B gain
effect.
.TP
\fB\-h\fR, \fB\-\-help\fR
Show version number and usage information.
.TP
\fB\-\-help\-effect \fINAME\fR
Show usage information on the specified effect.  The name
\fBall\fR can be used to show usage on all effects.
.TP
\fB\-\-help\-format \fINAME\fR
Show information about the specified file format.  The name
\fBall\fR can be used to show information on all formats.
.TP
\fB\-\-i\fR, \fB\-\-info\fR
Only if given as the first parameter to
.BR sox ,
behave as
.BR soxi (1).
.TP
\fB\-m\fR\^|\^\fB\-M\fR
Equivalent to \fB\-\-combine mix\fR and \fB\-\-combine merge\fR, respectively.
.TP
.B \-\-magic
If SoX has been built with the optional `libmagic' library then this
option can be given to enable its use in helping to detect audio file types.
.TP
\fB\-\-multi\-threaded\fR | \fB\-\-single\-threaded\fR
By default, SoX is `single threaded'.
If the \fB\-\-multi\-threaded\fR option is given however then SoX
will process audio channels for most multi-channel
effects in parallel on hyper-threading/multi-core architectures. This
may reduce processing time, though sometimes it may be necessary to use
this option in conjunction with a larger buffer size than is the default
to gain any benefit from multi-threaded processing
(e.g. 131072; see \fB\-\-buffer\fR above).
.TP
\fB\-\-no\-clobber\fR
Prompt before overwriting an existing file with the same name as that
given for the output file.
.SP
.B N.B.
Unintentionally overwriting a file is easier than you might think, for
example, if you accidentally enter
.EX
   sox file1 file2 effect1 effect2 ...
.EE
when what you really meant was
.EX
   play file1 file2 effect1 effect2 ...
.EE
then, without this option, file2 will be overwritten.  Hence, using
this option is recommended. SOX_OPTS (above), a `shell'
alias, script, or batch file may be an appropriate way of permanently
enabling it.
.TP
\fB\-\-norm\fR[\fB=\fIdB-level\fR]
Automatically invoke the
.B gain
effect to guard against clipping and to normalise the audio. E.g.
.EX
   sox \-\-norm infile \-b 16 outfile rate 44100 dither \-s
.EE
is shorthand for
.EX
   sox infile \-b 16 outfile gain \-h rate 44100 gain \-nh dither \-s
.EE
Optionally, the audio can be normalized to a given level (usually)
below 0 dBFS:
.EX
   sox \-\-norm=\-3 infile outfile
.EE
.SP
See also
.BR \-V,
.BR \-G,
and the
.B gain
effect.
.TP
\fB\-\-play\-rate\-arg ARG\fR
Selects a quality option to be used when the `rate' effect is automatically
invoked whilst playing audio.  This option is typically set via the
.B SOX_OPTS
environment variable (see above).
.TP
\fB\-\-plot gnuplot\fR\^|\^\fBoctave\fR\^|\^\fBoff\fR
If not set to
.B off
(the default if
.B \-\-plot
is not given), run in a mode that can be used, in conjunction with the
gnuplot program or the GNU Octave program, to assist with the selection
and configuration of many of the transfer-function based effects.
For the first given effect that supports the selected plotting program,
SoX will output commands to plot the effect's transfer function, and
then exit without actually processing any audio.  E.g.
.EX
   sox \-\-plot octave input-file \-n highpass 1320 > highpass.plt
   octave highpass.plt
.EE
.TP
\fB\-q\fR, \fB\-\-no\-show\-progress\fR
Run in quiet mode when SoX wouldn't otherwise do so.
This is the opposite of the \fB\-S\fR option.
.TP
\fB\-R\fR
Run in `repeatable' mode.  When this option is given, where
applicable, SoX will embed a fixed time-stamp in the output file (e.g.
\fBAIFF\fR) and will `seed' pseudo random number generators (e.g.
\fBdither\fR) with a fixed number, thus ensuring that successive SoX
invocations with the same inputs and the same parameters yield the
same output.
.TP
\fB\-\-replay\-gain track\fR\^|\^\fBalbum\fR\^|\^\fBoff\fR
Select whether or not to apply replay-gain adjustment to input files.
The default is
.B off
for
.B sox
and
.BR rec ,
.B album
for
.B play
where (at least) the first two input files are tagged with the same Artist and
Album names, and
.B track
for
.B play
otherwise.
.TP
\fB\-S\fR, \fB\-\-show\-progress\fR
Display input file format/header information, and processing progress as
input file(s) percentage complete, elapsed time, and remaining time (if
known; shown in brackets), and the number of samples written to the
output file.  Also shown is a peak-level meter, and an indication if
clipping has occurred.  The peak-level meter shows up to two channels
and is calibrated for digital audio as follows (right channel shown):
.ne 8
.TS
center;
cI lI cI lI
c l c l.
dB FSD	Display	dB FSD	Display
\-25	\-	\-11	====
\-23	T{
=
T}	\-9	====\-
\-21	=\-	\-7	=====
\-19	==	\-5	=====\-
\-17	==\-	\-3	======
\-15	===	\-1	=====!
\-13	===\-
.TE
.DT
.SP
A three-second peak-held value of headroom in dBs will be shown to the right
of the meter if this is below 6dB.
.SP
This option is enabled by default when using
SoX to play or record audio.
.TP
\fB\-T\fR\fR
Equivalent to \fB\-\-combine multiply\fR.
.TP
\fB\-\-temp\fI DIRECTORY\fR
Specify that any temporary files should be created in the given
.IR DIRECTORY .
This can be useful if there are permission or free-space problems with the
default location. In this case, using `\fB\-\-temp .\fR' (to use the
current directory) is often a good solution.
.TP
\fB\-\-version\fR
Show SoX's version number and exit.
.IP \fB\-V\fR[\fIlevel\fR]
Set verbosity. This is particularly useful for seeing how any automatic
effects have been invoked by SoX.
.SP
SoX displays messages on the console (stderr) according to the following
verbosity levels:
.IP
.RS
.IP 0
No messages are shown at all; use the exit status to determine
if an error has occurred.
.IP 1
Only error messages are shown.  These are generated if
SoX cannot complete the requested commands.
.IP 2
Warning messages are also shown.  These are generated if
SoX can complete the requested commands,
but not exactly according to the requested command parameters,
or if clipping occurs.
.IP 3
Descriptions of
SoX's processing phases are also shown.
Useful for seeing exactly how
SoX is processing your audio.
.IP "4 and above"
Messages to help with debugging
SoX are also shown.
.RE
.IP
By default, the verbosity level is set to 2 (shows errors and
warnings). Each occurrence of the \fB\-V\fR option increases the
verbosity level by 1.  Alternatively, the verbosity level can be set
to an absolute number by specifying it immediately after the
.BR \-V ,
e.g.
.B \-V0
sets it to 0.
.IP
.SS Input File Options
These options apply only to input files and may precede only input
filenames on the command line.
.TP
\fB\-\-ignore\-length\fR
Override an (incorrect) audio length given in an audio file's header. If
this option is given then SoX will keep reading audio until it reaches
the end of the input file.
.TP
\fB\-v\fR, \fB\-\-volume\fR \fIFACTOR\fR
Intended for use when combining multiple input files, this option
adjusts the volume of the file that follows it on the command line by a
factor of \fIFACTOR\fR. This allows it to be `balanced' w.r.t. the other
input files.  This is a linear (amplitude) adjustment, so a number less
than 1 decreases the volume and a number greater than 1 increases it.  If a
negative number is given then in addition to the volume adjustment,
the audio signal will be inverted.
.SP
See also the
.BR norm ,
.BR vol ,
and
.B gain
effects, and see \fBInput File Balancing\fR above.
.SS Input & Output File Format Options
These options apply to the input or output file whose name they
immediately precede on the command line and are used mainly when
working with headerless file formats or when specifying a format
for the output file that is different to that of the input file.
.TP
\fB\-b\fR \fIBITS\fR, \fB\-\-bits\fR \fIBITS\fR
The number of bits (a.k.a. bit-depth or sometimes word-length) in each
encoded sample.  Not applicable to complex encodings such as MP3 or GSM.
Not necessary with encodings that have a fixed number of bits, e.g.
A/\(*m-law, ADPCM.
.SP
For an input file, the most common use for this option is to inform
SoX of the number of bits per sample in a `raw' (`headerless') audio
file.  For example
.EX
   sox \-r 16k \-e signed \-b 8 input.raw output.wav
.EE
converts a particular `raw' file to a self-describing `WAV' file.
.SP
For an output file, this option can be used (perhaps along with
.BR \-e )
to set the output encoding size.  By default (i.e. if this option is
not given), the output encoding size will (providing it is supported
by the output file type) be set to the input encoding size.  For
example
.EX
   sox input.cdda \-b 24 output.wav
.EE
converts raw CD digital audio (16-bit, signed-integer) to a
24-bit (signed-integer) `WAV' file.
.TP
\fB\-c\fR \fICHANNELS\fR, \fB\-\-channels\fR \fICHANNELS\fR
The number of audio channels in the audio file. This can be any number
greater than zero.
.SP
For an input file, the most common use for this option is to inform
SoX of the number of channels in a `raw' (`headerless') audio file.
Occasionally, it may be useful to use this option with a `headered'
file, in order to override the (presumably incorrect) value in the
header\*mnote that this is only supported with certain file types.
Examples:
.EX
   sox \-r 48k \-e float \-b 32 \-c 2 input.raw output.wav
.EE
converts a particular `raw' file to a self-describing `WAV' file.
.EX
   play \-c 1 music.wav
.EE
interprets the file data as belonging to a single channel regardless
of what is indicated in the file header.  Note that if the file does
in fact have two channels, this will result in the file playing at
half speed.
.SP
For an output file, this option provides a shorthand for specifying
that the
.B channels
effect should be invoked in order to change (if necessary) the number
of channels in the audio signal to the number given.  For
example, the following two commands are equivalent:
.EX
.ne 2
   sox input.wav \-c 1 output.wav bass \-b 24
   sox input.wav      output.wav bass \-b 24 channels 1
.EE
though the second form is more flexible as it allows the effects to
be ordered arbitrarily.
.TP
\fB\-e \fIENCODING\fR, \fB\-\-encoding\fR \fIENCODING\fR
The audio encoding type.  Sometimes needed with file-types that
support more than one encoding type. For example, with raw, WAV, or
AU (but not, for example, with MP3 or FLAC).
The available encoding types are as follows:
.RS
.IP \fBsigned-integer\fR
PCM data stored as signed (`two's complement') integers.  Commonly used
with a 16 or 24 \-bit encoding size.
A value of 0 represents minimum signal power.
.IP \fBunsigned-integer\fR
PCM data stored as unsigned integers.  Commonly used
with an 8-bit encoding size.  A value of 0 represents maximum signal
power.
.IP \fBfloating-point\fR
PCM data stored as IEEE 753 single precision (32-bit) or double
precision (64-bit) floating-point (`real') numbers.
A value of 0 represents minimum signal power.
.IP \fBa-law\fR
International telephony standard for logarithmic encoding to 8 bits per
sample.  It has a precision equivalent to roughly 13-bit PCM and is
sometimes encoded with reversed bit-ordering (see the
.B \-X
option).
.IP \fBu-law,\ mu-law\fR
North American telephony standard for logarithmic encoding to 8 bits per
sample.  A.k.a. \(*m-law.  It has a precision equivalent to roughly
14-bit PCM and is
sometimes encoded with reversed bit-ordering (see the
.B \-X
option).
.IP \fBoki-adpcm\fR
OKI (a.k.a. VOX, Dialogic, or Intel) 4-bit ADPCM;
it has a precision equivalent to roughly 12-bit PCM.
ADPCM is a form of audio compression that has a good
compromise between audio quality and encoding/decoding speed.
.IP \fBima-adpcm\fR
IMA (a.k.a. DVI) 4-bit ADPCM;
it has a precision equivalent to roughly 13-bit PCM.
.IP \fBms-adpcm\fR
Microsoft 4-bit ADPCM; it has a precision equivalent to roughly 14-bit
PCM.
.IP \fBgsm-full-rate\fR
GSM is currently used for the vast majority of the world's digital
wireless telephone calls.  It utilises several audio
formats with different bit-rates and associated speech quality.
SoX has support for GSM's original 13kbps `Full Rate' audio format.
It is usually CPU-intensive to work with GSM audio.
.RE
.TP
\ 
Encoding names can be abbreviated where this would not be ambiguous;
e.g. `unsigned-integer' can be given as `un', but not `u' (ambiguous
with `u-law').
.SP
For an input file, the most common use for this option is to inform
SoX of the encoding of a `raw' (`headerless') audio
file (see the examples in
.B \-b
and
.B \-c
above).
.SP
For an output file, this option can be used (perhaps along with
.BR \-b )
to set the output encoding type  For example
.EX
   sox input.cdda \-e float output1.wav

   sox input.cdda \-b 64 \-e float output2.wav
.EE
convert raw CD digital audio (16-bit, signed-integer) to
floating-point `WAV' files (single & double precision respectively).
.SP
By default (i.e. if this option is not given), the output encoding
type will (providing it is supported by the output file type) be set
to the input encoding type.
.TP
\fB\-\-no\-glob\fR
Specifies that filename `globbing' (wild-card matching) should not be
performed by SoX on the following filename.  For example, if the current
directory contains the two files `five-seconds.wav' and `five*.wav', then
.EX
   play \-\-no\-glob "five*.wav"
.EE
can be used to play just the single file `five*.wav'.
.TP
\fB\-r, \fB\-\-rate\fR \fIRATE\fR[\fBk\fR]
Gives the sample rate in Hz (or kHz if appended with `k') of the file.
.SP
For an input file, the most common use for this option is to inform
SoX of the sample rate of a `raw' (`headerless') audio file (see the
examples in
.B \-b
and
.B \-c
above).
Occasionally it may be useful to use this option with a `headered'
file, in order to override the (presumably incorrect) value in the
header\*mnote that this is only supported with certain file types.
For example, if audio was recorded with a sample-rate of say 48k from
a source that played back a little, say 1\*d5%, too slowly, then
.EX
   sox \-r 48720 input.wav output.wav
.EE
effectively corrects the speed by changing only the file header (but see
also the
.B speed
effect for the more usual solution to this problem).
.SP
For an output file, this option provides a shorthand for specifying
that the
.B rate
effect should be invoked in order to change (if necessary) the sample
rate of the audio signal to the given value.  For example, the
following two commands are equivalent:
.EX
.ne 2
   sox input.wav \-r 48k output.wav bass \-b 24
   sox input.wav        output.wav bass \-b 24 rate 48k
.EE
though the second form is more flexible as it allows
.B rate
options to be given, and allows the effects to be ordered arbitrarily.
.TP
\fB\-t\fR, \fB\-\-type\fR \fIFILE-TYPE\fR
Gives the type of the audio file.  For both input and output files,
this option is commonly used to inform SoX of the type a `headerless'
audio file (e.g. raw, mp3) where the actual/desired type cannot be
determined from a given filename extension.  For example:
.EX
   another-command | sox \-t mp3 \- output.wav

   sox input.wav \-t raw output.bin
.EE
It can also be used to override the type implied by an input filename
extension, but if overriding with a type that has a header, SoX will
exit with an appropriate error message if such a header is not
actually present.
.SP
See
.BR soxformat (7)
for a list of supported file types.
.PP
\fB\-L\fR, \fB\-\-endian little\fR
.br
\fB\-B\fR, \fB\-\-endian big\fR
.br
\fB\-x\fR, \fB\-\-endian swap\fR
.if t .sp -.5
.if n .sp -1
.TP
\ 
These options specify whether the byte-order of the audio data is,
respectively, `little endian', `big endian', or the opposite to that of
the system on which SoX is being used.  Endianness applies only to data
encoded as floating-point, or as signed or unsigned integers of 16 or
more bits.  It is often necessary to specify one of these options for
headerless files, and sometimes necessary for (otherwise)
self-describing files.  A given endian-setting option may be ignored
for an input file whose header contains a specific endianness
identifier, or for an output file that is actually an audio device.
.SP
.B N.B.
Unlike other format characteristics, the endianness (byte, nibble, &
bit ordering) of the input file is not automatically used for the output
file; so, for example, when the following is run on a little-endian system:
.EX
   sox \-B audio.s16 trimmed.s16 trim 2
.EE
trimmed.s16 will be created as little-endian;
.EX
   sox \-B audio.s16 \-B trimmed.s16 trim 2
.EE
must be used to preserve big-endianness in the output file.
.SP
The
.B \-V
option can be used to check the selected orderings.
.TP
\fB\-N\fR, \fB\-\-reverse\-nibbles\fR
Specifies that the nibble ordering (i.e. the 2 halves of a byte) of the samples should be reversed;
sometimes useful with ADPCM-based formats.
.SP
.B N.B.
See also N.B. in section on
.B \-x
above.
.TP
\fB\-X\fR, \fB\-\-reverse\-bits\fR
Specifies that the bit ordering of the samples should be reversed;
sometimes useful with a few (mostly headerless) formats.
.SP
.B N.B.
See also N.B. in section on
.B \-x
above.
.SS Output File Format Options
These options apply only to the output file and may precede only the output
filename on the command line.
.TP
\fB\-\-add\-comment \fITEXT\fR
Append a comment in the output file header (where applicable).
.TP
\fB\-\-comment \fITEXT\fR
Specify the comment text to store in the output file header (where
applicable).
.SP
SoX will provide a default comment if this option (or
.BR \-\-comment\-file )
is not given. To specify that no comment should be stored in the output file,
use
.B "\-\-comment \(dq\(dq" .
.TP
\fB\-\-comment\-file \fIFILENAME\fR
Specify a file containing the comment text to store in the output
file header (where applicable).
.TP
\fB\-C\fR, \fB\-\-compression\fR \fIFACTOR\fR
The compression factor for variably compressing output file formats.  If
this option is not given then a default compression factor will apply.
The compression factor is interpreted differently for different
compressing file formats.  See the description of the file formats that
use this option in
.BR soxformat (7)
for more information.
.SH EFFECTS
In addition to converting, playing and recording audio files, SoX can
be used to invoke a number of audio `effects'.  Multiple effects may
be applied by specifying them one after another at the end of the SoX
command line, forming an `effects chain'.
Note that applying multiple effects in real-time (i.e. when playing audio)
is likely to require a high performance computer. Stopping other applications
may alleviate performance issues should they occur.
.SP
Some of the SoX effects are primarily intended to be applied to a single
instrument or `voice'.  To facilitate this, the \fBremix\fR effect and
the global SoX option \fB\-M\fR can be used to isolate then recombine
tracks from a multi-track recording.
.SS Multiple Effects Chains
A single effects chain is made up of one or more effects.  Audio from
the input runs through the chain until either the end of the input file
is reached or an effect in the chain requests to terminate the chain.
.SP
SoX supports running multiple effects chains over the input audio.
In this case, when one chain indicates it is done processing audio,
the audio data is then sent through the next effects chain.  This
continues until either no more effects chains exist or the input has
reached the end of the file.
.SP
An effects chain is terminated by placing a
.B :
(colon) after an effect.  Any following effects are a part of a new effects chain.
.SP
It is important to place the effect that will stop the chain
as the first effect in the chain.  This is because any samples
that are buffered by effects to the left of the terminating effect
will be discarded.  The amount of samples discarded is related to the
.B \-\-buffer
option and it should be kept small, relative to the sample rate, if
the terminating effect cannot be first.  Further information on
stopping effects can be found in the
.B Stopping SoX
section.
.SP
There are a few pseudo-effects that aid using multiple effects chains.
These include
.B newfile
which will start writing to a new output file before moving to the
next effects chain and
.B restart
which will move back to the first effects chain.  Pseudo-effects
must be specified as the first effect in a chain and as the only
effect in a chain (they must have a
.B :
before and after they are specified).
.SP
The following is an example of multiple effects chains.  It will split the
input file into multiple files of 30 seconds in length.  Each output filename
will have unique number in its name as documented in the
.B Output Files
section.
.EX
   sox infile.wav output.wav trim 0 30 : newfile : restart
.EE
.SS Common Notation And Parameters
In the descriptions that follow,
brackets [ ] are used to denote parameters that are optional, braces
{ } to denote those that are both optional and repeatable,
and angle brackets < > to denote those that are repeatable but not
optional.
Where applicable, default values for optional parameters are shown in parenthesis ( ).
.SP
The following parameters are used with, and have the same meaning for,
several effects:
.TP
\fIcenter\fR[\fBk\fR]
See
.IR frequency .
.TP
\fIfrequency\fR[\fBk\fR]
A frequency in Hz, or, if appended with `k', kHz.
.TP
\fIgain\fR
A power gain in dB.
Zero gives no gain; less than zero gives an attenuation.
.TP
\fIposition\fR
A position within the audio stream; the syntax is
[\fB=\fR\^|\^\fB+\fR\^|\^\fB\-\fR]\fItimespec\fR, where \fItimespec\fR is a
time specification (see below).  The optional first character indicates
whether the \fItimespec\fR is to be interpreted relative to the start
(\fB=\fR) or end (\fB\-\fR) of audio, or to the previous \fIposition\fR if
the effect accepts multiple position arguments (\fB+\fR).  The audio length
must be known for end-relative locations to work; some effects do accept
\fB\-0\fR for end-of-audio, though, even if the length is unknown.  Which of
\fB=\fR, \fB+\fR, \fB\-\fR is the default depends on the effect and is shown
in its syntax as, e.g., \fIposition(+)\fR.
.SP
Examples: \fB=2:00\fR (two minutes into the audio stream), \fB\-100s\fR (one
hundred samples before the end of audio), \fB+0:12+10s\fR (twelve seconds
and ten samples after the previous position), \fB\-0.5+1s\fR (one sample less
than half a second before the end of audio).
.TP
\fIwidth\fR[\fBh\fR\^|\^\fBk\fR\^|\^\fBo\fR\^|\^\fBq\fR]
Used to specify the band-width of a filter.  A number of different
methods to specify the width are available (though not all for every effect).
One of the characters shown may be appended to select the desired method
as follows:
.ne 5
.TS
center;
cI cI lI
cB c l.
\ 	Method	Notes
h	Hz	\ 
k	kHz	\ 
o	Octaves	\ 
q	Q-factor	See [2]
.TE
.DT
.SP
For each effect that uses this parameter, the default method (i.e. if no
character is appended) is the one that it listed first in the first line of
the effect's description.
.PP
Most effects that expect an audio position or duration in a parameter,
i.e. a \fBtime specification\fR, accept either of the following two forms:
.TP
[[\fIhours\fB:\fR]\fIminutes\fB:\fR]\fIseconds\fR[\fB.\fIfrac\fR][\fBt\fR]
A specification of `1:30\*d5' corresponds to one minute, thirty and
\(12 seconds.  The \fBt\fR suffix is entirely optional (however, see the
\fBsilence\fR effect for an exception).
Note that the component values do not have to be normalized; e.g.,
`1:23:45', `83:45', `79:0285', `1:0:1425', `1::1425' and `5025' all are
legal and equivalent to each other.
.TP
\fIsamples\fBs\fR
Specifies the number of samples directly, as in `8000s'.  For large sample
counts, \fIe notation\fR is supported: `1.7e6s' is the same as `1700000s'.
.PP
Time specifications can also be chained with \fB+\fR or \fB\-\fR into a new
time specification where the right part is added to or subtracted from the
left, respectively: `3:00\-200s' means two hundred samples less than three
minutes.
.SP
To see if SoX has support for an optional effect, enter
.B sox \-h
and look for its name under the list: `EFFECTS'.
.SS Supported Effects
Note: a categorised list of the effects can be found in the
accompanying `README' file.
.TP
\fBallpass\fR \fIfrequency\fR[\fBk\fR]\fI width\fR[\fBh\fR\^|\^\fBk\fR\^|\^\fBo\fR\^|\^\fBq\fR]
Apply a two-pole all-pass filter with central frequency (in Hz)
\fIfrequency\fR, and filter-width \fIwidth\fR.
An all-pass filter changes the
audio's frequency to phase relationship without changing its frequency
to amplitude relationship.  The filter is described in detail in [1].
.SP
This effect supports the \fB\-\-plot\fR global option.
.TP
\fBband\fR [\fB\-n\fR] \fIcenter\fR[\fBk\fR]\fR [\fIwidth\fR[\fBh\fR\^|\^\fBk\fR\^|\^\fBo\fR\^|\^\fBq\fR]]
Apply a band-pass filter.
The frequency response drops logarithmically
around the
.I center
frequency.
The
.I width
parameter gives the slope of the drop.
The frequencies at
.I center
+
.I width
and
.I center
\-
.I width
will be half of their original amplitudes.
.B band
defaults to a mode oriented to pitched audio,
i.e. voice, singing, or instrumental music.
The \fB\-n\fR (for noise) option uses the alternate mode
for un-pitched audio (e.g. percussion).
.B Warning:
\fB\-n\fR introduces a power-gain of about 11dB in the filter, so beware
of output clipping.
.B band
introduces noise in the shape of the filter,
i.e. peaking at the
.I center
frequency and settling around it.
.SP
This effect supports the \fB\-\-plot\fR global option.
.SP
See also \fBsinc\fR for a bandpass filter with steeper shoulders.
.TP
\fBbandpass\fR\^|\^\fBbandreject\fR [\fB\-c\fR] \fIfrequency\fR[\fBk\fR]\fI width\fR[\fBh\fR\^|\^\fBk\fR\^|\^\fBo\fR\^|\^\fBq\fR]
Apply a two-pole Butterworth band-pass or band-reject filter with
central frequency \fIfrequency\fR, and (3dB-point) band-width
\fIwidth\fR.  The
.B \-c
option applies only to
.B bandpass
and selects a constant skirt gain (peak gain = Q) instead of the
default: constant 0dB peak gain.
The filters roll off at 6dB per octave (20dB per decade)
and are described in detail in [1].
.SP
These effects support the \fB\-\-plot\fR global option.
.SP
See also \fBsinc\fR for a bandpass filter with steeper shoulders.
.TP
\fBbandreject \fIfrequency\fR[\fBk\fR]\fI width\fR[\fBh\fR\^|\^\fBk\fR\^|\^\fBo\fR\^|\^\fBq\fR]
Apply a band-reject filter.
See the description of the \fBbandpass\fR effect for details.
.TP
\fBbass\fR\^|\^\fBtreble \fIgain\fR [\fIfrequency\fR[\fBk\fR]\fR [\fIwidth\fR[\fBs\fR\^|\^\fBh\fR\^|\^\fBk\fR\^|\^\fBo\fR\^|\^\fBq\fR]]]
Boost or cut the bass (lower) or treble (upper) frequencies of the audio
using a two-pole shelving filter with a response similar to that
of a standard hi-fi's tone-controls.  This is also
known as shelving equalisation (EQ).
.SP
\fIgain\fR gives the gain at 0\ Hz (for \fBbass\fR), or whichever is
the lower of \(ap22\ kHz and the Nyquist frequency (for \fBtreble\fR).  Its
useful range is about \-20 (for a large cut) to +20 (for a large
boost).
Beware of
.B Clipping
when using a positive \fIgain\fR.
.SP
If desired, the filter can be fine-tuned using the following
optional parameters:
.SP
\fIfrequency\fR sets the filter's central frequency and so can be
used to extend or reduce the frequency range to be boosted or
cut.  The default value is 100\ Hz (for \fBbass\fR) or 3\ kHz (for
\fBtreble\fR).
.SP
\fIwidth\fR
determines how
steep is the filter's shelf transition.  In addition to the common
width specification methods described above,
`slope' (the default, or if appended with `\fBs\fR') may be used.
The useful range of `slope' is
about 0\*d3, for a gentle slope, to 1 (the maximum), for a steep slope; the
default value is 0\*d5.
.SP
The filters are described in detail in [1].
.SP
These effects support the \fB\-\-plot\fR global option.
.SP
See also \fBequalizer\fR for a peaking equalisation effect.
.TP
\fBbend\fR [\fB\-f \fIframe-rate\fR(25)] [\fB\-o \fIover-sample\fR(16)] { \fIstart-position(+)\fB,\fIcents\fB,\fIend-position(+)\fR }
Changes pitch by specified amounts at specified times.
Each given triple: \fIstart-position\fB,\fIcents\fB,\fIend-position\fR
specifies one bend.
\fIcents\fR is the number of cents (100 cents = 1 semitone) by which to
bend the pitch. The other values specify the points in time at which to start
and end bending the pitch, respectively.
.SP
The pitch-bending algorithm utilises the Discrete Fourier Transform (DFT)
at a particular frame rate and over-sampling rate.
The
.B \-f
and
.B \-o
parameters may be used to adjust these parameters and thus control the
smoothness of the changes in pitch.
.SP
For example, an initial tone is generated, then bent three times, yielding
four different notes in total:
.EX
.ne 2
   play \-n synth 2.5 sin 667 gain 1 \\
	bend .35,180,.25  .15,740,.53  0,\-520,.3
.EE
Here, the first bend runs from 0.35 to 0.6, and the second one from 0.75
to 1.28 seconds.
Note that the clipping that is produced in this example is deliberate;
to remove it, use
.B gain\ \-5
in place of
.BR gain\ 1 .
.SP
See also \fBpitch\fR.
.TP
\fBbiquad \fIb0 b1 b2 a0 a1 a2\fR
Apply a biquad IIR filter with the given coefficients. Where b* and a* are
the numerator and denominator coefficients respectively.
.SP
See http://en.wikipedia.org/wiki/Digital_biquad_filter (where a0 = 1).
.SP
This effect supports the \fB\-\-plot\fR global option.
.TP
\fBchannels \fICHANNELS\fR
Invoke a simple algorithm to change the number of channels in
the audio signal to the given number
.IR CHANNELS :
mixing if decreasing the number of channels or duplicating if
increasing the number of channels.
.SP
The
.B channels
effect is invoked automatically if SoX's \fB\-c\fR option specifies a
number of channels that is different to that of the input file(s).
Alternatively, if this effect is given explicitly, then SoX's
.B \-c
option need not be given.  For example, the following two commands are
equivalent:
.EX
.ne 2
   sox input.wav \-c 1 output.wav bass \-b 24
   sox input.wav      output.wav bass \-b 24 channels 1
.EE
though the second form is more flexible as it allows the effects to
be ordered arbitrarily.
.SP
See also
.B remix
for an effect that allows channels to be mixed/selected arbitrarily.
.TP
\fBchorus \fIgain-in gain-out\fR <\fIdelay decay speed depth \fB\-s\fR\^|\^\fB\-t\fR>
Add a chorus effect to the audio.  This can make a single vocal sound
like a chorus, but can also be applied to instrumentation.
.SP
Chorus resembles an echo effect with a short delay, but
whereas with echo the delay is constant, with chorus, it
is varied using sinusoidal or triangular modulation.  The modulation
depth defines the range the modulated delay is played before or after the
delay. Hence the delayed sound will sound slower or faster, that is the delayed
sound tuned around the original one, like in a chorus where some vocals are
slightly off key.
See [3] for more discussion of the chorus effect.
.SP
Each four-tuple parameter
delay/decay/speed/depth gives the delay in milliseconds
and the decay (relative to gain-in) with a modulation
speed in Hz using depth in milliseconds.
The modulation is either sinusoidal (\fB\-s\fR) or triangular
(\fB\-t\fR).  Gain-out is the volume of the output.
.SP
A typical delay is around 40ms to 60ms; the modulation speed is best
near 0\*d25Hz and the modulation depth around 2ms.
For example, a single delay:
.EX
   play guitar1.wav chorus 0.7 0.9 55 0.4 0.25 2 \-t
.EE
Two delays of the original samples:
.EX
.ne 2
   play guitar1.wav chorus 0.6 0.9 50 0.4 0.25 2 \-t \\
	 60 0.32 0.4 1.3 \-s
.EE
A fuller sounding chorus (with three additional delays):
.EX
.ne 2
   play guitar1.wav chorus 0.5 0.9 50 0.4 0.25 2 \-t \\
	 60 0.32 0.4 2.3 \-t 40 0.3 0.3 1.3 \-s
.EE
.TP
\fBcompand \fIattack1\fB,\fIdecay1\fR{\fB,\fIattack2\fB,\fIdecay2\fR}
[\fIsoft-knee-dB\fB:\fR]\fIin-dB1\fR[\fB,\fIout-dB1\fR]{\fB,\fIin-dB2\fB,\fIout-dB2\fR}
.br
[\fIgain\fR [\fIinitial-volume-dB\fR [\fIdelay\fR]]]
.SP
Compand (compress or expand) the dynamic range of the audio.
.SP
The
.I attack
and
.I decay
parameters (in seconds) determine the time over which the
instantaneous level of the input signal is averaged to determine its
volume; attacks refer to increases in volume and decays refer to
decreases.
For most situations, the attack time (response to the music getting
louder) should be shorter than the decay time because the human ear is more
sensitive to sudden loud music than sudden soft music.
Where more than one pair of attack/decay parameters are
specified, each input channel is companded separately and the number of
pairs must agree with the number of input channels.
Typical values are
.B 0\*d3,0\*d8
seconds.
.SP
The second parameter is a list of points on the compander's transfer
function specified in dB relative to the maximum possible signal
amplitude.  The input values must be in a strictly increasing order but
the transfer function does not have to be monotonically rising.  If
omitted, the value of
.I out-dB1
defaults to the same value as
.IR in-dB1 ;
levels below
.I in-dB1
are not companded (but may have gain applied to them).
The point \fB0,0\fR is assumed but may be overridden (by
\fB0,\fIout-dBn\fR).
If the list is preceded by a
.I soft-knee-dB
value, then the points at where adjacent line segments on the
transfer function meet will be rounded by the amount given.
Typical values for the transfer function are
.BR 6:\-70,\-60,\-20 .
.SP
The third (optional) parameter is an additional gain in dB to be applied
at all points on the transfer function and allows easy adjustment
of the overall gain.
.SP
The fourth (optional) parameter is an initial level to be assumed for
each channel when companding starts.  This permits the user to supply a
nominal level initially, so that, for example, a very large gain is not
applied to initial signal levels before the companding action has begun
to operate: it is quite probable that in such an event, the output would
be severely clipped while the compander gain properly adjusts itself.
A typical value (for audio which is initially quiet) is
.B \-90
dB.
.SP
The fifth (optional) parameter is a delay in seconds.  The input signal
is analysed immediately to control the compander, but it is delayed
before being fed to the volume adjuster.  Specifying a delay
approximately equal to the attack/decay times allows the compander to
effectively operate in a `predictive' rather than a reactive mode.
A typical value is
.B 0\*d2
seconds.
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
The following example might be used to make a piece of music with both
quiet and loud passages suitable for listening to in a noisy environment
such as a moving vehicle:
.EX
   sox asz.wav asz-car.wav compand 0.3,1 6:\-70,\-60,\-20 \-5 \-90 0.2
.EE
The transfer function (`6:\-70,...') says that very soft sounds (below
\-70dB) will remain unchanged.  This will stop the compander from
boosting the volume on `silent' passages such as between movements.
However, sounds in the range \-60dB to 0dB (maximum
volume) will be boosted so that the 60dB dynamic range of the
original music will be compressed 3-to-1 into a 20dB range, which is
wide enough to enjoy the music but narrow enough to get around the
road noise.  The `6:' selects 6dB soft-knee companding.
The \-5 (dB) output gain is needed to avoid clipping (the number is
inexact, and was derived by experimentation).
The \-90 (dB) for the initial volume will work fine for a clip that starts
with near silence, and the delay of 0\*d2 (seconds) has the effect of causing
the compander to react a bit more quickly to sudden volume changes.
.SP
In the next example, compand is being used as a noise-gate for when the
noise is at a lower level than the signal:
.EX
   play infile compand .1,.2 \-inf,\-50.1,\-inf,\-50,\-50 0 \-90 .1
.EE
Here is another noise-gate, this time for when the
noise is at a higher level than the signal (making it, in some ways,
similar to squelch):
.EX
   play infile compand .1,.1 \-45.1,\-45,\-inf,0,\-inf 45 \-90 .1
.EE
This effect supports the \fB\-\-plot\fR global option (for the transfer function).
.SP
See also
.B mcompand
for a multiple-band companding effect.
.TP
\fBcontrast \fR[\fIenhancement-amount\fR(75)]
Comparable with compression, this effect modifies an audio signal to
make it sound louder.
.I enhancement-amount
controls the amount of the enhancement and is a number in the range 0\-100.
Note that
.I enhancement-amount
= 0 still gives a significant contrast enhancement.
.SP
See also the
.B compand
and
.B mcompand
effects.
.TP
\fBdcshift \fIshift\fR [\fIlimitergain\fR]
Apply a DC shift to the audio.  This can be useful to remove a DC
offset (caused perhaps by a hardware problem in the recording chain)
from the audio.  The effect of a DC offset is reduced headroom and
hence volume.
The
.B stat
or
.B stats
effect can be used to determine if a signal has a DC offset.
.SP
The given \fIdcshift\fR value is a floating point number in the range
of \(+-2 that indicates the amount to shift the audio (which is in the
range of \(+-1).
.SP
An optional
.I limitergain
can be specified as well.  It should have a value much less than 1
(e.g. 0\*d05 or 0\*d02) and is used only on peaks to prevent clipping.
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
An alternative approach to removing a DC offset (albeit with a short delay)
is to use the
.B highpass
filter effect at a frequency of say 10Hz, as illustrated in the following
example:
.EX
   sox \-n dc.wav synth 5 sin %0 50
   sox dc.wav fixed.wav highpass 10
.EE
.TP
\fBdeemph\fR
Apply Compact Disc (IEC 60908) de-emphasis (a treble attenuation shelving
filter).
.SP
Pre-emphasis was applied in the mastering of some CDs issued in the early
1980s.  These included many classical music albums, as well as now
sought-after issues of albums by The Beatles, Pink Floyd and others.
Pre-emphasis should be removed at playback time by a de-emphasis
filter in the playback device.  However, not all modern CD players have
this filter, and very few PC CD drives have it; playing pre-emphasised
audio without the correct de-emphasis filter results in audio that sounds harsh
and is far from what its creators intended.
.SP
With the
.B deemph
effect, it is possible to apply the necessary de-emphasis to audio that
has been extracted from a pre-emphasised CD, and then either burn the
de-emphasised audio to a new CD (which will then play correctly on any
CD player), or simply play the correctly de-emphasised audio files on the
PC.  For example:
.EX
   sox track1.wav track1\-deemph.wav deemph
.EE
and then burn track1-deemph.wav to CD, or
.EX
   play track1\-deemph.wav
.EE
or simply
.EX
   play track1.wav deemph
.EE
The de-emphasis filter is implemented as a biquad and requires the input
audio sample rate to be either 44.1kHz or 48kHz.  Maximum deviation
from the ideal response is only 0\*d06dB (up to 20kHz).
.SP
This effect supports the \fB\-\-plot\fR global option.
.SP
See also the \fBbass\fR and \fBtreble\fR shelving equalisation effects.
.TP
\fBdelay\fR {\fIposition(=)\fR}
Delay one or more audio channels such that they start at the given
\fIposition\fR.
For example,
.B delay 1\*d5 +1 3000s
delays the first channel by 1\*d5 seconds, the second channel by 2\*d5
seconds (one second more than the previous channel), the third channel
by 3000 samples, and leaves any other channels that may be
present un-delayed.
The following (one long) command plays a chime sound:
.EX
.ne 3
   play \-n synth \-j 3 sin %3 sin %\-2 sin %\-5 sin %\-9 \\
	sin %\-14 sin %\-21 fade h .01 2 1.5 delay \\
	1.3 1 .76 .54 .27 remix \- fade h 0 2.7 2.5 norm \-1
.EE
and this plays a guitar chord:
.EX
.ne 2
   play \-n synth pl G2 pl B2 pl D3 pl G3 pl D4 pl G4 \\
	delay 0 .05 .1 .15 .2 .25 remix \- fade 0 4 .1 norm \-1
.EE
.TP
\fBdither\fR [\fB\-S\fR\^|\^\fB\-s\fR\^|\^\fB\-f \fIfilter\fR] [\fB\-a\fR] [\fB\-p \fIprecision\fR]
Apply dithering to the audio.
Dithering deliberately adds a small amount of noise to the signal in
order to mask audible quantization effects that can occur if the output
sample size is less than 24 bits.  With no options, this effect will
add triangular (TPDF) white noise.  Noise-shaping (only for certain
sample rates) can be selected with
.BR \-s .
With the
.B \-f
option, it is possible to select a particular noise-shaping filter from
the following list: lipshitz, f-weighted, modified-e-weighted,
improved-e-weighted, gesemann, shibata, low-shibata, high-shibata.  Note
that most filter types are available only with 44100Hz sample rate.  The
filter types are distinguished by the following properties: audibility
of noise, level of (inaudible, but in some circumstances, otherwise
problematic) shaped high frequency noise, and processing speed.
.br
See http://sox.sourceforge.net/SoX/NoiseShaping for graphs of the different
noise-shaping curves.
.SP
The
.B \-S
option selects a slightly `sloped' TPDF, biased towards higher
frequencies.  It can be used at any sampling rate but below \(~~22k,
plain TPDF is probably better, and above \(~~ 37k, noise-shaping
(if available) is probably better.
.SP
The
.B \-a
option enables a mode where dithering (and noise-shaping if applicable)
are automatically enabled only when needed.  The most likely use for
this is when applying fade in or out to an already dithered file, so
that the redithering applies only to the faded portions.  However, auto
dithering is not fool-proof, so the fades should be carefully checked
for any noise modulation; if this occurs, then either re-dither the whole
file, or use
.BR trim ,
.BR fade ,
and concatencate.
.SP
The
.B \-p
option allows overriding the target precision.
.SP
If the SoX global option
.B \-R
option is not given, then the pseudo-random number generator used to
generate the white noise will be `reseeded', i.e. the generated noise
will be different between invocations.
.SP
This effect should not be followed by any other effect that
affects the audio.
.SP
See also the `Dithering' section above.
.TP
\fBdownsample\fR [\fIfactor\fR(2)]
Downsample the signal by an integer factor: Only the first out of
each \fIfactor\fR samples is retained, the others are discarded.
.SP
No decimation filter is applied.  If the input is not a properly
bandlimited baseband signal, aliasing will occur.  This may be
desirable, e.g., for frequency translation.
.SP
For a general resampling effect with anti-aliasing, see \fBrate\fR.  See
also \fBupsample\fR.
.TP
\fBearwax\fR
Makes audio easier to listen to on headphones.
Adds `cues' to 44\*d1kHz stereo (i.e. audio CD format) audio so that
when listened to on headphones the stereo image is
moved from inside
your head (standard for headphones) to outside and in front of the
listener (standard for speakers).
.TP
\fBecho \fIgain-in gain-out\fR <\fIdelay decay\fR>
Add echoing to the audio.
Echoes are reflected sound and can occur naturally amongst mountains
(and sometimes large buildings) when talking or shouting; digital echo
effects emulate this behaviour and are often used to help fill
out the sound of a single instrument or vocal.  The time difference
between the original signal and the reflection is the `delay' (time),
and the loudness of the reflected signal is the `decay'.  Multiple echoes
can have different delays and decays.
.SP
Each given
.I "delay decay"
pair gives the delay in milliseconds
and the decay (relative to gain-in) of that echo.
Gain-out is the volume of the output.
For example:
This will make it sound as if there are twice as many instruments as are
actually playing:
.EX
   play lead.aiff echo 0.8 0.88 60 0.4
.EE
If the delay is very short, then it sound like a (metallic) robot playing
music:
.EX
   play lead.aiff echo 0.8 0.88 6 0.4
.EE
A longer delay will sound like an open air concert in the mountains:
.EX
   play lead.aiff echo 0.8 0.9 1000 0.3
.EE
One mountain more, and:
.EX
   play lead.aiff echo 0.8 0.9 1000 0.3 1800 0.25
.EE
.TP
\fBechos \fIgain-in gain-out\fR <\fIdelay decay\fR>
Add a sequence of echoes to the audio.
Each
.I "delay decay"
pair gives the delay in milliseconds
and the decay (relative to gain-in) of that echo.
Gain-out is the volume of the output.
.SP
Like the echo effect, echos stand for `ECHO in Sequel', that is the first echos
takes the input, the second the input and the first echos, the third the input
and the first and the second echos, ... and so on.
Care should be taken using many echos; a single echos
has the same effect as a single echo.
.SP
The sample will be bounced twice in symmetric echos:
.EX
   play lead.aiff echos 0.8 0.7 700 0.25 700 0.3
.EE
The sample will be bounced twice in asymmetric echos:
.EX
   play lead.aiff echos 0.8 0.7 700 0.25 900 0.3
.EE
The sample will sound as if played in a garage:
.EX
   play lead.aiff echos 0.8 0.7 40 0.25 63 0.3
.EE
.TP
\fBequalizer \fIfrequency\fR[\fBk\fR]\fI width\fR[\fBq\fR\^|\^\fBo\fR\^|\^\fBh\fR\^|\^\fBk\fR] \fIgain\fR
Apply a two-pole peaking equalisation (EQ) filter.
With this filter, the signal-level at and around a selected frequency
can be increased or decreased, whilst (unlike band-pass and band-reject
filters) that at all other frequencies is unchanged.
.SP
\fIfrequency\fR gives the filter's central frequency in Hz,
\fIwidth\fR, the band-width,
and \fIgain\fR the required gain
or attenuation in dB.
Beware of
.B Clipping
when using a positive \fIgain\fR.
.SP
In order to produce complex equalisation curves, this effect
can be given several times, each with a different central frequency.
.SP
The filter is described in detail in [1].
.SP
This effect supports the \fB\-\-plot\fR global option.
.SP
See also \fBbass\fR and \fBtreble\fR for shelving equalisation effects.
.TP
\fBfade\fR [\fItype\fR] \fIfade-in-length\fR [\fIstop-position(=)\fR [\fIfade-out-length\fR]]
Apply a fade effect to the beginning, end, or both of the audio.
.SP
An optional \fItype\fR can be specified to select the shape of the fade
curve:
\fBq\fR for quarter of a sine wave, \fBh\fR for half a sine
wave, \fBt\fR for linear (`triangular') slope, \fBl\fR for logarithmic,
and \fBp\fR for inverted parabola.  The default is logarithmic.
.SP
A fade-in starts from the first sample and ramps the signal level from 0
to full volume over the time given as \fIfade-in-length\fR.  Specify 0 if
no fade-in is wanted.
.SP
For fade-outs, the audio will be truncated at
.I stop-position
and the signal level will be ramped from full volume down to 0 over an
interval of \fIfade-out-length\fR before the \fIstop-position\fR.  If
.I fade-out-length
is not specified, it defaults to the same value as
\fIfade-in-length\fR.
No fade-out is performed if
.I stop-position
is not specified.
If the audio length can be determined from the input file header and any
previous effects, then \fB\-0\fR (or, for historical reasons, \fB0\fR) may
be specified for
.I stop-position
to indicate the usual case of a fade-out that ends at the end of the input
audio stream.
.SP
Any time specification may be used for \fIfade-in-length\fR and
\fIfade-out-length\fR.
.SP
See also the
.B splice
effect.
.TP
\fBfir\fR [\fIcoefs-file\fR\^|\^\fIcoefs\fR]
Use SoX's FFT convolution engine with given FIR filter
coefficients.
If a single argument is given then this is treated as the name of a file
containing the filter coefficients (white-space separated; may contain
`#' comments).  If the given filename is `\-', or if no argument is
given, then the coefficients are read from the `standard input' (stdin);
otherwise, coefficients may be given on the command line.
Examples:
.EX
   sox infile outfile fir 0.0195 \-0.082 0.234 0.891 \-0.145 0.043
.EE
.EX
   sox infile outfile fir coefs.txt
.EE
with coefs.txt containing
.EX
   # HP filter
   # freq=10000
     1.2311233052619888e\-01
    \-4.4777096106211783e\-01
     5.1031563346705155e\-01
    \-6.6502926320995331e\-02
   ...
.EE
.SP
This effect supports the \fB\-\-plot\fR global option.
.TP
\fBflanger\fR [\fIdelay depth regen width speed shape phase interp\fR]
Apply a flanging effect to the audio.
See [3] for a detailed description of flanging.
.SP
All parameters are optional (right to left).
.ne 15
.TS
center;
cI cI cI lI
cI c c l.
\ 	Range	Default	Description
delay	0 \- 30	0	Base delay in milliseconds.
depth	0 \- 10	2	Added swept delay in milliseconds.
regen	\-95 \- 95	0	T{
.na
Percentage regeneration (delayed signal feedback).
T}
width	0 \- 100	71	T{
.na
Percentage of delayed signal mixed with original.
T}
speed	0\*d1 \- 10	0\*d5	Sweeps per second (Hz).
shape	\ 	sin	Swept wave shape: \fBsine\fR\^|\^\fBtriangle\fR.
phase	0 \- 100	25	T{
.na
Swept wave percentage phase-shift for multi-channel (e.g. stereo) flange;
0 = 100 = same phase on each channel.
T}
interp	\ 	lin	T{
.na
Digital delay-line interpolation: \fBlinear\fR\^|\^\fBquadratic\fR.
T}
.TE
.DT
.TP
\fBgain \fR[\fB\-e\fR\^|\^\fB\-B\fR\^|\^\fB\-b\fR\^|\^\fB\-r\fR] [\fB\-n\fR] [\fB\-l\fR\^|\^\fB\-h\fR] [\fIgain-dB\fR]
Apply amplification or attenuation to the audio signal, or, in some
cases, to some of its channels.
Note that use of any of
.BR \-e ,
.BR \-B ,
.BR \-b ,
.BR \-r ,
or
.B \-n
requires temporary file space to store the audio to be processed, so may
be unsuitable for use with `streamed' audio.
.SP
Without other options,
.I gain-dB
is used to adjust the signal power level by the given number of dB:
positive amplifies (beware of Clipping), negative attenuates.  With
other options, the
.I gain-dB
amplification or attenuation is (logically) applied after the processing due to those options.
.SP
Given the
.B \-e
option, the levels of the audio channels of a multi-channel file are `equalised', i.e.
gain is applied to all channels other than that with the highest peak
level, such that all channels attain the same peak level
(but, without also giving
.BR \-n ,
the audio is not `normalised').
.SP
The
.B \-B
(balance) option is similar to
.BR \-e ,
but with
.BR \-B,
the RMS level is used instead of the peak level.
.B \-B
might be used to correct stereo imbalance caused by an imperfect record
turntable cartridge.   Note
that unlike
.BR \-e ,
.B \-B
might cause some clipping.
.SP
.B \-b
is similar to
.B \-B
but has clipping protection, i.e.  if necessary to prevent clipping
whilst balancing, attenuation is applied to all channels.
Note, however, that in conjunction with
.BR \-n ,
.B \-B
and
.B \-b
are synonymous.
.SP
The
.B \-r
option is used in conjunction with a prior invocation of
.B gain
with the
.B \-h
option\*msee below for details.
.SP
The
.B \-n
option normalises the audio to 0dB FSD; it is often used in conjunction with a negative
.I gain-dB
to the effect that the audio is normalised to a given level below 0dB.
For example,
.EX
   sox infile outfile gain \-n
.EE
normalises to 0dB, and
.EX
   sox infile outfile gain \-n \-3
.EE
normalises to \-3dB.
.SP
The
.B \-l
option invokes a simple limiter, e.g.
.EX
   sox infile outfile gain \-l 6
.EE
will apply 6dB of gain but never clip.  Note that limiting more than a
few dBs more than occasionally (in a piece of audio) is not recommended
as it can cause audible distortion.
See the
.B compand
effect for a more capable limiter.
.SP
The
.B \-h
option is used to apply gain to provide head-room for subsequent
processing.  For example, with
.EX
   sox infile outfile gain \-h bass +6
.EE
6dB of attenuation will be applied prior to the bass boosting effect
thus ensuring that it will not clip.  Of course, with bass, it is
obvious how much headroom will be needed, but with other effects (e.g.
rate, dither) it is not always as clear.  Another advantage of using
\fBgain \-h\fR rather than an explicit attenuation, is that if the
headroom is not used by subsequent effects, it can be reclaimed with
\fBgain \-r\fR, for example:
.EX
   sox infile outfile gain \-h bass +6 rate 44100 gain \-r
.EE
The above effects chain guarantees never to clip nor amplify;
it attenuates if necessary to prevent clipping, but by only as
much as is needed to do so.
.SP
Output formatting (dithering and bit-depth reduction) also requires
headroom (which cannot be `reclaimed'), e.g.
.EX
   sox infile outfile gain \-h bass +6 rate 44100 gain \-rh dither
.EE
Here, the second
.B gain
invocation, reclaims as much of the headroom as it can from the
preceding effects, but retains as much headroom as is needed for
subsequent processing.
The SoX global option
.B \-G
can be given to automatically invoke \fBgain \-h\fR and \fBgain \-r\fR.
.SP
See also the
.B norm
and
.B vol
effects.
.TP
\fBhighpass\fR\^|\^\fBlowpass\fR [\fB\-1\fR|\fB\-2\fR] \fIfrequency\fR[\fBk\fR]\fR [\fRwidth\fR[\fBq\fR\^|\^\fBo\fR\^|\^\fBh\fR\^|\^\fBk\fR]]
Apply a high-pass or low-pass filter with 3dB point \fIfrequency\fR.
The filter can be either single-pole (with
.BR \-1 ),
or double-pole (the default, or with
.BR \-2 ).
.I width
applies only to double-pole filters;
the default is Q = 0\*d707 and gives a Butterworth response.  The filters
roll off at 6dB per pole per octave (20dB per pole per decade).  The
double-pole filters are described in detail in [1].
.SP
These effects support the \fB\-\-plot\fR global option.
.SP
See also \fBsinc\fR for filters with a steeper roll-off.
.TP
\fBhilbert\fR [\fB\-n \fItaps\fR]
Apply an odd-tap Hilbert transform filter, phase-shifting the signal
by 90 degrees.
.SP
This is used in many matrix coding schemes and for analytic signal
generation.  The process is often written as a multiplication by \fIi\fR
(or \fIj\fR), the imaginary unit.
.SP
An odd-tap Hilbert transform filter has a bandpass characteristic,
attenuating the lowest and highest frequencies.  Its bandwidth can be
controlled by the number of filter taps, which can be specified with
\fB\-n\fR.  By default, the number of taps is chosen for a cutoff
frequency of about 75 Hz.
.SP
This effect supports the \fB\-\-plot\fR global option.
.TP
\fBladspa\fR [\fB-l\fR\^|\^\fB-r\fR] \fImodule\fR [\fIplugin\fR] [\fIargument\fR ...]
Apply a LADSPA [5] (Linux Audio Developer's Simple Plugin API) plugin.
Despite the name, LADSPA is not Linux-specific, and a wide range of
effects is available as LADSPA plugins, such as cmt [6] (the Computer
Music Toolkit) and Steve Harris's plugin collection [7]. The first
argument is the plugin module, the second the name of the plugin (a
module can contain more than one plugin), and any other arguments are
for the control ports of the plugin. Missing arguments are supplied by
default values if possible.
.SP
Normally, the number of input ports of the plugin must match the number
of input channels, and the number of output ports determines the output
channel count.  However, the
.B \-r
(replicate) option allows cloning a mono plugin to handle multi-channel
input.
.SP
Some plugins introduce latency which SoX may optionally compensate for.
The
.B \-l
(latency compensation) option automatically compensates for latency
as reported by the plugin via an output control port named "latency".
.SP
If found, the environment variable LADSPA_PATH will be used as search
path for plugins.
.TP
\fBloudness\fR [\fIgain\fR [\fIreference\fR]]
Loudness control\*msimilar to the
.B gain
effect, but provides equalisation for the human auditory system.  See
http://en.wikipedia.org/wiki/Loudness for a detailed description of
loudness.  The gain is adjusted by the given
.I gain
parameter (usually negative) and the signal equalised according to ISO
226 w.r.t. a reference level of 65dB, though an alternative
.I reference
level may be given if the original audio has been equalised for some
other optimal level.
A default gain of \-10dB is used if a
.I gain
value is not given.
.SP
See also the
.B gain
effect.
.TP
\fBlowpass\fR [\fB\-1\fR|\fB\-2\fR] \fIfrequency\fR[\fBk\fR]\fR [\fRwidth\fR[\fBq\fR\^|\^\fBo\fR\^|\^\fBh\fR\^|\^\fBk\fR]]
Apply a low-pass filter.
See the description of the \fBhighpass\fR effect for details.
.TP
\fBmcompand\fR \(dq\fIattack1\fB,\fIdecay1\fR{\fB,\fIattack2\fB,\fIdecay2\fR}
[\fIsoft-knee-dB\fB:\fR]\fIin-dB1\fR[\fB,\fIout-dB1\fR]{\fB,\fIin-dB2\fB,\fIout-dB2\fR}
.br
[\fIgain\fR [\fIinitial-volume-dB\fR [\fIdelay\fR]]]\(dq {\fIcrossover-freq\fR[\fBk\fR] \(dqattack1,...\(dq}
.SP
The multi-band compander is similar to the single-band compander but the
audio is first divided into bands using Linkwitz-Riley cross-over filters
and a separately specifiable compander run on each band.  See the
\fBcompand\fR effect for the definition of its parameters.  Compand
parameters are specified between double quotes and the crossover
frequency for that band is given by \fIcrossover-freq\fR; these can be
repeated to create multiple bands.
.SP
For example, the following (one long) command shows how multi-band
companding is typically used in FM radio:
.EX
.ne 8
   play track1.wav gain \-3 sinc 8000\- 29 100 mcompand \\
	\(dq0.005,0.1 \-47,\-40,\-34,\-34,\-17,\-33\(dq 100 \\
	\(dq0.003,0.05 \-47,\-40,\-34,\-34,\-17,\-33\(dq 400 \\
	\(dq0.000625,0.0125 \-47,\-40,\-34,\-34,\-15,\-33\(dq 1600 \\
	\(dq0.0001,0.025 \-47,\-40,\-34,\-34,\-31,\-31,\-0,\-30\(dq 6400 \\
	\(dq0,0.025 \-38,\-31,\-28,\-28,\-0,\-25\(dq \\
	gain 15 highpass 22 highpass 22 sinc \-n 255 \-b 16 \-17500 \\
	gain 9 lowpass \-1 17801
.EE
The audio file is played with a simulated FM radio sound (or broadcast
signal condition if the lowpass filter at the end is skipped).
Note that the pipeline is set up with US-style 75us pre-emphasis.
.SP
See also
.B compand
for a single-band companding effect.
.TP
\fBnoiseprof\fR [\fIprofile-file\fR]
Calculate a profile of the audio for use in noise reduction.  See the
description of the \fBnoisered\fR effect for details.
.TP
\fBnoisered\fR [\fIprofile-file\fR [\fIamount\fR]]
Reduce noise in the audio signal by profiling and filtering.  This
effect is moderately effective at removing consistent background noise
such as hiss or hum.  To use it, first run SoX with the \fBnoiseprof\fR
effect on a section of audio that ideally would contain silence but in
fact contains noise\*msuch sections are typically found at the beginning
or the end of a recording.  \fBnoiseprof\fR will write out a noise
profile to \fIprofile-file\fR, or to stdout if no \fIprofile-file\fR or
if `\-' is given.  E.g.
.EX
   sox speech.wav \-n trim 0 1.5 noiseprof speech.noise-profile
.EE
To actually remove the noise, run SoX again, this time with the \fBnoisered\fR
effect;
.B noisered
will reduce noise according to a noise profile (which was generated by
.BR noiseprof ),
from
.IR profile-file ,
or from stdin if no \fIprofile-file\fR or if `\-' is given.  E.g.
.EX
   sox speech.wav cleaned.wav noisered speech.noise-profile 0.3
.EE
How much noise should be removed is specified by
.IR amount \*ma
number between 0 and 1 with a default of 0\*d5.  Higher numbers will
remove more noise but present a greater likelihood of removing wanted
components of the audio signal.  Before replacing an original recording
with a noise-reduced version, experiment with different
.I amount
values to find the optimal one for your audio; use headphones to check
that you are happy with the results, paying particular attention to quieter
sections of the audio.
.SP
On most systems, the two stages\*mprofiling and reduction\*mcan be combined
using a pipe, e.g.
.EX
   sox noisy.wav \-n trim 0 1 noiseprof | play noisy.wav noisered
.EE
.TP
\fBnorm\fR [\fIdB-level\fR]
Normalise the audio.
.B norm
is just an alias for \fBgain \-n\fR; see the
.B gain
effect for details.
.TP
\fBoops\fR
Out Of Phase Stereo effect.
Mixes stereo to twin-mono where each mono channel contains the
difference between the left and right stereo channels.
This is sometimes known as the `karaoke' effect as it often has the effect
of removing most or all of the vocals from a recording.
It is equivalent to \fBremix 1,2i 1,2i\fR.
.TP
\fBoverdrive\fR [\fIgain\fR(20) [\fIcolour\fR(20)]]
Non linear distortion.
The \fIcolour\fR parameter controls the amount of even harmonic content
in the over-driven output.
.TP
\fBpad\fR { \fIlength\fR[\fB@\fIposition(=)\fR] }
Pad the audio with silence, at the beginning, the end, or any
specified points through the audio.
.I length
is the amount of silence to insert and
.I position
the position in the input audio stream at which to insert it.
Any number of lengths and positions may be specified, provided that
a specified position is not less that the previous one, and any time
specification may be used for them.
.I position
is optional for the first and last lengths specified and
if omitted correspond to the beginning and the end of the audio respectively.
For example,
.B pad 1\*d5 1\*d5
adds 1\*d5 seconds of silence padding at each end of the audio, whilst
.B pad 4000s@3:00
inserts 4000 samples of silence 3 minutes into the audio.
If silence is wanted only at the end of the audio, specify either the end
position or specify a zero-length pad at the start.
.SP
See also
.B delay
for an effect that can add silence at the beginning of
the audio on a channel-by-channel basis.
.TP
\fBphaser \fIgain-in gain-out delay decay speed\fR [\fB\-s\fR\^|\^\fB\-t\fR]
Add a phasing effect to the audio.
See [3] for a detailed description of phasing.
.SP
delay/decay/speed gives the delay in milliseconds
and the decay (relative to gain-in) with a modulation
speed in Hz.
The modulation is either sinusoidal (\fB\-s\fR) \*mpreferable for multiple
instruments, or triangular
(\fB\-t\fR) \*mgives single instruments a sharper phasing effect.
The decay should be less than 0\*d5 to avoid
feedback, and usually no less than 0\*d1.  Gain-out is the volume of the output.
.SP
For example:
.EX
   play snare.flac phaser 0.8 0.74 3 0.4 0.5 \-t
.EE
Gentler:
.EX
   play snare.flac phaser 0.9 0.85 4 0.23 1.3 \-s
.EE
A popular sound:
.EX
   play snare.flac phaser 0.89 0.85 1 0.24 2 \-t
.EE
More severe:
.EX
   play snare.flac phaser 0.6 0.66 3 0.6 2 \-t
.EE
.TP
\fBpitch \fR[\fB\-q\fR] \fIshift\fR [\fIsegment\fR [\fIsearch\fR [\fIoverlap\fR]]]
Change the audio pitch (but not tempo).
.SP
.I shift
gives the pitch shift as positive or negative `cents' (i.e. 100ths of a
semitone).  See the
.B tempo
effect for a description of the other parameters.
.SP
See also the \fBbend\fR, \fBspeed\fR,
and
.B tempo
effects.
.TP
\fBrate\fR [\fB\-q\fR\^|\^\fB\-l\fR\^|\^\fB\-m\fR\^|\^\fB\-h\fR\^|\^\fB\-v\fR] [override-options] \fIRATE\fR[\fBk\fR]
Change the audio sampling rate (i.e. resample the audio) to any given
.I RATE
(even non-integer if this is supported by the output file format)
using a quality level defined as follows:
.ne 10
.TS
center;
cI cI2w9 cI2w6 cIw6 lIw17
cB c c c l.
\ 	Quality	T{
.na
Band-width
T}	Rej dB	T{
.na
Typical Use
T}
\-q	T{
.na
quick
T}	n/a	T{
.na
\(~=30 @ \ Fs/4
T}	T{
.na
playback on ancient hardware
T}
\-l	low	80%	100	T{
.na
playback on old hardware
T}
\-m	medium	95%	100	T{
.na
audio playback
T}
\-h	high	95%	125	T{
.na
16-bit mastering (use with dither)
T}
\-v	T{
.na
very high
T}	95%	175	24-bit mastering
.TE
.DT
.SP
where
.I Band-width
is the percentage of the audio frequency band that is preserved and
.I Rej dB
is the level of noise rejection.  Increasing levels of resampling
quality come at the expense of increasing amounts of time to process the
audio.  If no quality option is given, the quality level used is `high'
(but see `Playing & Recording Audio' above regarding playback).
.SP
The `quick' algorithm uses cubic interpolation; all others use
band-limited interpolation.  By default, all algorithms have
a `linear' phase response; for `medium', `high' and
`very high', the phase response is configurable (see below).
.SP
The
.B rate
effect is invoked automatically if SoX's \fB\-r\fR option specifies a
rate that is different to that of the input file(s).  Alternatively, if
this effect is given explicitly, then SoX's
.B \-r
option need not be given.  For example, the following two commands are
equivalent:
.EX
.ne 2
   sox input.wav \-r 48k output.wav bass \-b 24
   sox input.wav        output.wav bass \-b 24 rate 48k
.EE
though the second command is more flexible as it allows
.B rate
options to be given, and allows the effects to be ordered arbitrarily.
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
Warning: technically detailed discussion follows.
.SP
The simple quality selection described above provides settings that
satisfy the needs of the vast majority of resampling tasks.
Occasionally, however, it may be desirable to fine-tune the resampler's
filter response; this can be achieved using
.IR override\ options ,
as detailed in the following table:
.ne 6
.TS
center;
lB lw51.
\-M/\-I/\-L	Phase response = minimum/intermediate/linear
\-s	Steep filter (band-width = 99%)
\-a	Allow aliasing/imaging above the pass-band
\-b\ 74\-99\*d7	Any band-width %
\-p\ 0\-100	T{
.na
Any phase response (0 = minimum, 25 = intermediate, 50 = linear, 100 = maximum)
T}
.TE
.DT
.SP
N.B.  Override options cannot be used with the `quick' or `low'
quality algorithms.
.SP
All resamplers use filters that can sometimes create `echo' (a.k.a.
`ringing') artefacts with transient signals such as those that occur
with `finger snaps' or other highly percussive sounds.  Such artefacts are
much more noticeable to the human ear if they occur before the transient
(`pre-echo') than if they occur after it (`post-echo').  Note that
frequency of any such artefacts is related to the smaller of the
original and new sampling rates but that if this is at least 44\*d1kHz,
then the artefacts will lie outside the range of human hearing.
.SP
A phase response setting may be used to control the distribution of any
transient echo between
`pre' and `post': with minimum phase, there is no pre-echo but the
longest post-echo; with linear phase, pre and post echo are in equal
amounts (in signal terms, but not audibility terms); the intermediate
phase setting attempts to find the best compromise by selecting a small
length (and level) of pre-echo and a medium lengthed post-echo.
.SP
Minimum, intermediate, or linear phase response is selected using the
.BR \-M ,
.BR \-I ,
or
.B \-L
option; a custom phase response can be created with the
.B \-p
option.  Note that phase responses between `linear' and `maximum'
(greater than 50) are rarely useful.
.SP
A resampler's band-width setting determines how much of the frequency
content of the original signal (w.r.t. the original sample rate when
up-sampling, or the new sample rate when down-sampling) is preserved
during conversion.  The term `pass-band' is used to refer to all frequencies
up to the band-width point (e.g. for 44\*d1kHz sampling rate, and a
resampling band-width of 95%, the pass-band represents frequencies from
0Hz (D.C.) to circa 21kHz).  Increasing the resampler's band-width
results in a slower conversion and can increase transient echo
artefacts (and vice versa).
.SP
The
.B \-s
`steep filter' option changes resampling band-width from the default 95%
(based on the 3dB point), to 99%.  The
.B \-b
option allows the band-width to be set to any value in the range
74\-99\*d7 %, but note that band-width values greater than 99% are not
recommended for normal use as they can cause excessive transient echo.
.SP
If the
.B \-a
option is given, then aliasing/imaging above the pass-band is allowed.  For
example, with 44\*d1kHz sampling rate, and a
resampling band-width of 95%, this means that frequency content above
21kHz can be distorted; however, since this is above the pass-band (i.e.
above the highest frequency of interest/audibility), this may not be a
problem.  The benefits of allowing aliasing/imaging are reduced processing time,
and reduced (by almost half) transient echo artefacts.
Note that if this option is given, then
the minimum band-width allowable with
.B \-b
increases to 85%.
.SP
Examples:
.EX
   sox input.wav \-b 16 output.wav rate \-s \-a 44100 dither \-s
.EE
default (high) quality resampling; overrides: steep filter, allow
aliasing; to 44\*d1kHz sample rate; noise-shaped dither to 16-bit WAV
file.
.EX
   sox input.wav \-b 24 output.aiff rate \-v \-I \-b 90 48k
.EE
very high quality resampling; overrides: intermediate phase, band-width 90%;
to 48k sample rate; store output to 24-bit AIFF file.
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
The
.B pitch
and
.B speed
effects use the
.B rate
effect at their core.
.TP
\fBremix\fR [\fB\-a\fR\^|\^\fB\-m\fR\^|\^\fB\-p\fR] <\fIout-spec\fR>
\fIout-spec\fR	= \fIin-spec\fR{\fB,\fIin-spec\fR} | \fB0\fR
.br
\fIin-spec\fR	= [\fIin-chan\fR]\^[\fB\-\fR[\fIin-chan2\fR]]\^[\fIvol-spec\fR]
.br
\fIvol-spec\fR	= \fBp\fR\^|\^\fBi\fR\^|\^\fBv\^\fR[\fIvolume\fR]
.br
.SP
Select and mix input audio channels into output audio channels.  Each output
channel is specified, in turn, by a given \fIout-spec\fR: a list of
contributing input channels and volume specifications.
.SP
Note that this effect operates on the audio
.I channels
within the SoX effects processing chain; it should not be confused with the
.B \-m
global option (where multiple
.I files
are mix-combined before entering the effects chain).
.SP
An
.I out-spec
contains comma-separated input channel-numbers and hyphen-delimited
channel-number ranges; alternatively,
.B 0
may be given to create a silent output channel.  For example,
.EX
   sox input.wav output.wav remix 6 7 8 0
.EE
creates an output file with four channels, where channels 1, 2, and 3 are
copies of channels 6, 7, and 8 in the input file, and channel 4 is silent.
Whereas
.EX
   sox input.wav output.wav remix 1\-3,7 3
.EE
creates a (somewhat bizarre) stereo output file where the left channel
is a mix-down of input channels 1, 2, 3, and 7, and the right channel is
a copy of input channel 3.
.SP
Where a range of channels is specified, the channel numbers to the left and
right of the hyphen are optional and default to 1 and to the number of input
channels respectively. Thus
.EX
   sox input.wav output.wav remix \-
.EE
performs a mix-down of all input channels to mono.
.SP
By default, where an output channel is mixed from multiple (n) input
channels, each input channel will be scaled by a factor of \(S1/\s-2n\s+2.
Custom mixing volumes can be set by following a given input channel or range
of input channels with a \fIvol-spec\fR (volume specification).
This is one of the letters \fBp\fR, \fBi\fR, or \fBv\fR,
followed by a volume number, the meaning of which depends on the given
letter and is defined as follows:
.TS
center;
lI lI lI
c l l.
Letter	Volume number	Notes
p	power adjust in dB	0 = no change
i	power adjust in dB	T{
.na
As `p', but invert the audio
T}
v	voltage multiplier	T{
.na
1 = no change, 0\*d5 \(~= 6dB attenuation, 2 \(~= 6dB gain, \-1 = invert
T}
.TE
.DT
.SP
If an
.I out-spec
includes at least one
.I vol-spec
then, by default, \(S1/\s-2n\s+2 scaling is not applied to any other channels in the
same out-spec (though may be in other out-specs).
The \-a (automatic)
option however, can be given to retain the automatic scaling in this
case.  For example,
.EX
   sox input.wav output.wav remix 1,2 3,4v0.8
.EE
results in channel level multipliers of 0\*d5,0\*d5 1,0\*d8, whereas
.EX
   sox input.wav output.wav remix \-a 1,2 3,4v0.8
.EE
results in channel level multipliers of 0\*d5,0\*d5 0\*d5,0\*d8.
.SP
The \-m (manual) option disables all automatic volume adjustments, so
.EX
   sox input.wav output.wav remix \-m 1,2 3,4v0.8
.EE
results in channel level multipliers of 1,1 1,0\*d8.
.SP
The volume number is optional and omitting it corresponds to no volume
change; however, the only case in which this is useful is in conjunction
with
.BR i .
For example, if
.I input.wav
is stereo, then
.EX
   sox input.wav output.wav remix 1,2i
.EE
is a mono equivalent of the
.B oops
effect.
.SP
If the \fB\-p\fR option is given, then any automatic \(S1/\s-2n\s+2 scaling
is replaced by \(S1/\s-2\(srn\s+2 (`power') scaling; this gives a louder mix
but one that might occasionally clip.
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
One use of the
.B remix
effect is to split an audio file into a set of files, each containing
one of the constituent channels (in order to perform subsequent
processing on individual audio channels).  Where more than a few
channels are involved, a script such as the following (Bourne shell
script) is useful:
.EX
#!/bin/sh
chans=\`soxi \-c "$1"\`
while [ $chans \-ge 1 ]; do
   chans0=\`printf %02i $chans\`   # 2 digits hence up to 99 chans
   out=\`echo "$1"|sed "s/\\(.*\\)\\.\\(.*\\)/\\1\-$chans0.\\2/"\`
   sox "$1" "$out" remix $chans
   chans=\`expr $chans \- 1\`
done
.EE
If a file
.I input.wav
containing six audio channels were given, the script would produce six
output files:
.IR input-01.wav ,
\fIinput-02.wav\fR, ...,
.IR input-06.wav .
.SP
See also the \fBswap\fR effect.
.TP
\fBrepeat\fR [\fIcount\fR(1)|\fB\-\fR]
Repeat the entire audio \fIcount\fR times, or once if \fIcount\fR is not given.
The special value \fB\-\fR requests infinite repetition.
Requires temporary file space to store the audio to be repeated.
Note that repeating once yields two copies: the original audio and the
repeated audio.
.TP
\fBreverb\fR [\fB\-w\fR|\fB\-\-wet-only\fR] [\fIreverberance\fR (50%) [\fIHF-damping\fR (50%)
[\fIroom-scale\fR (100%) [\fIstereo-depth\fR (100%)
.br
[\fIpre-delay\fR (0ms) [\fIwet-gain\fR (0dB)]]]]]]
.SP
Add reverberation to the audio using the `freeverb' algorithm.  A
reverberation effect is sometimes desirable for concert halls that are too
small or contain so many people that the hall's natural reverberance is
diminished.  Applying a small amount of stereo reverb to a (dry) mono signal
will usually make it sound more natural.  See [3] for a detailed description
of reverberation.
.SP
Note that this effect
increases both the volume and the length of the audio, so to prevent clipping
in these domains, a typical invocation might be:
.EX
   play dry.wav gain \-3 pad 0 3 reverb
.EE
The
.B \-w
option can be given to select only the `wet' signal, thus allowing it to be
processed further, independently of the `dry' signal.  E.g.
.EX
   play \-m voice.wav "|sox voice.wav \-p reverse reverb \-w reverse"
.EE
for a reverse reverb effect.
.TP
\fBreverse\fR
Reverse the audio completely.
Requires temporary file space to store the audio to be reversed.
.TP
\fBriaa\fR
Apply RIAA vinyl playback equalisation.
The sampling rate must be one of: 44\*d1, 48, 88\*d2, 96 kHz.
.SP
This effect supports the \fB\-\-plot\fR global option.
.TP
\fBsilence \fR[\fB\-l\fR] \fIabove-periods\fR [\fIduration threshold\fR[\fBd\fR\^|\^\fB%\fR]
[\fIbelow-periods duration threshold\fR[\fBd\fR\^|\^\fB%\fR]]
.SP
Removes silence from the beginning, middle, or end of the audio.
`Silence' is determined by a specified threshold.
.SP
The \fIabove-periods\fR value is used to indicate if audio should be
trimmed at the beginning of the audio. A value of zero indicates no
silence should be trimmed from the beginning. When specifying a
non-zero \fIabove-periods\fR, it trims audio up until it finds
non-silence. Normally, when trimming silence from beginning of audio
the \fIabove-periods\fR will be 1 but it can be increased to higher
values to trim all audio up to a specific count of non-silence
periods. For example, if you had an audio file with two songs that
each contained 2 seconds of silence before the song, you could specify
an \fIabove-period\fR of 2 to strip out both silence periods and the
first song.
.SP
When \fIabove-periods\fR is non-zero, you must also specify a
\fIduration\fR and \fIthreshold\fR. \fIduration\fR indicates the
amount of time that non-silence must be detected before it stops
trimming audio. By increasing the duration, burst of noise can be
treated as silence and trimmed off.
.SP
\fIthreshold\fR is used to indicate what sample value you should treat as
silence.  For digital audio, a value of 0 may be fine but for audio
recorded from analog, you may wish to increase the value to account
for background noise.
.SP
When optionally trimming silence from the end of the audio, you specify
a \fIbelow-periods\fR count.  In this case, \fIbelow-period\fR means
to remove all audio after silence is detected.
Normally, this will be a value 1 of but it can
be increased to skip over periods of silence that are wanted.  For example,
if you have a song with 2 seconds of silence in the middle and 2 second
at the end, you could set below-period to a value of 2 to skip over the
silence in the middle of the audio.
.SP
For \fIbelow-periods\fR, \fIduration\fR specifies a period of silence
that must exist before audio is not copied any more.  By specifying
a higher duration, silence that is wanted can be left in the audio.
For example, if you have a song with an expected 1 second of silence
in the middle and 2 seconds of silence at the end, a duration of 2
seconds could be used to skip over the middle silence.
.SP
Unfortunately, you must know the length of the silence at the
end of your audio file to trim off silence reliably.  A workaround is
to use the \fBsilence\fR effect in combination with the \fBreverse\fR effect.
By first reversing the audio, you can use the \fIabove-periods\fR
to reliably trim all audio from what looks like the front of the file.
Then reverse the file again to get back to normal.
.SP
To remove silence from the middle of a file, specify a
\fIbelow-periods\fR that is negative.  This value is then
treated as a positive value and is also used to indicate that the
effect should restart processing as specified by the
\fIabove-periods\fR, making it suitable for removing periods of
silence in the middle of the audio.
.SP
The option
.B \-l
indicates that \fIbelow-periods\fR \fIduration\fR length of audio
should be left intact at the beginning of each period of silence.
For example, if you want to remove long pauses between words
but do not want to remove the pauses completely.
.SP
\fIduration\fR is a time specification with the peculiarity that a bare
number is interpreted as a sample count, not as a number of seconds.
For specifying seconds, either use the \fBt\fR suffix (as in `2t') or
specify minutes, too (as in `0:02').
.SP
\fIthreshold\fR numbers may be suffixed with
.B d
to indicate the value is in decibels, or
.B %
to indicate a percentage of maximum value of the sample value
(\fB0%\fR specifies pure digital silence).
.SP
The following example shows how this effect can be used to start a recording
that does not contain the delay at the start which usually occurs between
`pressing the record button' and the start of the performance:
.EX
   rec \fIparameters filename other-effects\fR silence 1 5 2%
.EE
.na
.TP
\fBsinc\fR [\fB\-a\fI att\fR\^|\^\fB\-b\fI beta\fR] [\fB\-p\fI phase\fR\^|\^\fB\-M\fR\^|\^\fB\-I\fR\^|\^\fB\-L\fR] \:[\fB\-t\fI tbw\fR\^|\^\fB\-n\fI taps\fR] [\fIfreqHP\fR]\:[\fB\-\fIfreqLP\fR [\fB\-t\fR tbw\^|\^\fB\-n\fR taps]]
.ad
Apply a sinc kaiser-windowed low-pass, high-pass, band-pass, or band-reject filter
to the signal.
The \fIfreqHP\fR and \fIfreqLP\fR parameters give the frequencies of the
6dB points of a high-pass and low-pass filter that may be invoked
individually, or together.  If both are
given, then \fIfreqHP\fR less than \fIfreqLP\fR creates a band-pass filter,
\fIfreqHP\fR greater than \fIfreqLP\fR creates a band-reject filter.
For example, the invocations
.EX
   sinc 3k
   sinc -4k
   sinc 3k-4k
   sinc 4k-3k
.EE
create a high-pass, low-pass, band-pass, and band-reject filter
respectively.
.SP
The default stop-band attenuation of 120dB can be overridden with
\fB\-a\fR; alternatively, the kaiser-window `beta' parameter can be
given directly with \fB\-b\fR.
.SP
The default transition band-width of 5% of the total band can be
overridden with \fB\-t\fR (and \fItbw\fR in Hertz); alternatively, the
number of filter taps can be given directly with \fB\-n\fR.
.SP
If both \fIfreqHP\fR and \fIfreqLP\fR are given, then a \fB\-t\fR or
\fB\-n\fR option given to the left of the frequencies applies to both
frequencies; one of these options given to the right of the frequencies
applies only to \fIfreqLP\fR.
.SP
The
.BR \-p ,
.BR \-M ,
.BR \-I ,
and
.B \-L
options control the filter's phase response; see the \fBrate\fR effect
for details.
.SP
This effect supports the \fB\-\-plot\fR global option.
.TP
\fBspectrogram \fR[\fIoptions\fR]
Create a spectrogram of the audio; the audio is passed unmodified
through the SoX processing chain.  This effect is optional\*mtype
\fBsox \-\-help\fR and check the list of supported effects to see if
it has been included.
.SP
The spectrogram is rendered in a Portable Network Graphic (PNG) file,
and shows time in the X-axis, frequency in the Y-axis, and audio
signal magnitude in the Z-axis.  Z-axis values are represented by the
colour (or optionally the intensity) of the pixels in the X-Y plane.
If the audio signal contains multiple channels then these are shown
from top to bottom starting from channel 1 (which is the left channel
for stereo audio).
.SP
For example, if `my.wav' is a stereo file, then with
.EX
   sox my.wav \-n spectrogram
.EE
a spectrogram of the entire file will be created in the file
`spectrogram.png'.  More often though, analysis of a smaller portion
of the audio is required; e.g. with
.EX
   sox my.wav \-n remix 2 trim 20 30 spectrogram
.EE
the spectrogram shows information only from the second (right)
channel, and of thirty seconds of audio starting from twenty seconds
in.  To analyse a small portion of the frequency domain, the
.B rate
effect may be used, e.g.
.EX
   sox my.wav \-n rate 6k spectrogram
.EE
allows detailed analysis of frequencies up to 3kHz (half the sampling
rate) i.e. where the human auditory system is most sensitive.
With
.EX
   sox my.wav \-n trim 0 10 spectrogram \-x 600 \-y 200 \-z 100
.EE
the given options control the size of the spectrogram's X, Y & Z axes
(in this case, the spectrogram area of the produced image will be 600
by 200 pixels in size and the Z-axis range will be 100 dB).  Note that
the produced image includes axes legends etc. and so will be a little
larger than the specified spectrogram size.  In this example:
.EX
   sox \-n \-n synth 6 tri 10k:14k spectrogram \-z 100 \-w kaiser
.EE
an analysis `window' with high dynamic range is selected to best
display the spectrogram of a swept triangular wave.  For a smilar
example, append the following to the `chime' command in the
description of the
.B delay
effect (above):
.EX
   rate 2k spectrogram \-X 200 \-Z \-10 \-w kaiser
.EE
Options are also available to control the appearance (colour-set,
brightness, contrast, etc.) and filename of the spectrogram; e.g. with
.EX
   sox my.wav \-n spectrogram \-m \-l \-o print.png
.EE
a spectrogram is created suitable for printing on a `black and white'
printer.
.SP
.I Options:
.RS
.IP \fB\-x\ \fInum\fR
Change the (maximum) width (X-axis) of the spectrogram from its default
value of 800 pixels to a given number between 100 and 200000.
See also \fB\-X\fR and \fB\-d\fR.
.IP \fB\-X\ \fInum\fR
X-axis pixels/second; the default is auto-calculated to fit the given
or known audio duration to the X-axis size, or 100 otherwise.  If
given in conjunction with \fB\-d\fR, this option affects the width of
the spectrogram; otherwise, it affects the duration of the
spectrogram.
.I num
can be from 1 (low time resolution) to 5000 (high time resolution)
and need not be an integer.  SoX
may make a slight adjustment to the given number for processing
quantisation reasons; if so, SoX will report the actual number used
(viewable when the SoX global option
.B \-V
is in effect).
See also \fB\-x\fR and \fB\-d\fR.
.IP \fB\-y\ \fInum\fR
Sets the Y-axis size in pixels (per channel); this is the number of
frequency `bins' used in the Fourier analysis that produces the
spectrogram.  N.B. it can be slow to produce the spectrogram if this
number is not one more than a power of two (e.g. 129).  By default the
Y-axis size is chosen automatically (depending on the number of
channels).  See
.B \-Y
for alternative way of setting spectrogram height.
.IP \fB\-Y\ \fInum\fR
Sets the target total height of the spectrogram(s).  The default value
is 550 pixels.  Using this option (and by default), SoX will choose a
height for individual spectrogram channels that is one more than a
power of two, so the actual total height may fall short of the given
number.  However, there is also a minimum height per channel so if
there are many channels, the number may be exceeded.
See
.B \-y
for alternative way of setting spectrogram height.
.IP \fB\-z\ \fInum\fR
Z-axis (colour) range in dB, default 120.  This sets the dynamic-range
of the spectrogram to be \-\fInum\fR\ dBFS to 0\ dBFS.
.I Num
may range from 20 to 180.  Decreasing dynamic-range effectively
increases the `contrast' of the spectrogram display, and vice versa.
.IP \fB\-Z\ \fInum\fR
Sets the upper limit of the Z-axis in dBFS.
A negative
.I num
effectively increases the `brightness' of the spectrogram display,
and vice versa.
.IP \fB\-q\ \fInum\fR
Sets the Z-axis quantisation, i.e. the number of different colours (or
intensities) in which to render Z-axis
values.  A small number (e.g. 4) will give a `poster'-like effect making
it easier to discern magnitude bands of similar level.  Small numbers
also usually
result in small PNG files.  The number given specifies the number of
colours to use inside the Z-axis range; two colours are reserved to
represent out-of-range values.
.IP \fB\-w\ \fIname\fR
Window: Hann (default), Hamming, Bartlett, Rectangular, Kaiser or Dolph.  The
spectrogram is produced using the Discrete Fourier Transform (DFT)
algorithm.  A significant parameter to this algorithm is the choice of
`window function'.  By default, SoX uses the Hann window which has good
all-round frequency-resolution and dynamic-range properties.  For better
frequency resolution (but lower dynamic-range), select a Hamming window;
for higher dynamic-range (but poorer frequency-resolution), select a
Dolph window.  Kaiser, Bartlett and Rectangular windows are also available.
.IP \fB\-W\ \fInum\fR
Window adjustment parameter.  This can be used to make small
adjustments to the Kaiser or Dolph window shape.  A positive number (up to
ten) increases its dynamic range, a negative number decreases it.
.IP \fB\-s\fR
Allow slack overlapping of DFT windows.
This can, in some cases, increase image sharpness and give greater adherence
to the
.B \-x
value, but at the expense of a little spectral loss.
.IP \fB\-m\fR
Creates a monochrome spectrogram (the default is colour).
.IP \fB\-h\fR
Selects a high-colour palette\*mless visually pleasing than the default
colour palette, but it may make it easier to differentiate different levels.
If this option is used in conjunction with
.BR \-m ,
the result will be a hybrid monochrome/colour palette.
.IP \fB\-p\ \fInum\fR
Permute the colours in a colour or hybrid palette.
The
.I num
parameter, from 1 (the default) to 6, selects the permutation.
.IP \fB\-l\fR
Creates a `printer friendly' spectrogram with a light background (the
default has a dark background).
.IP \fB\-a\fR
Suppress the display of the axis lines.  This is sometimes useful in
helping to discern artefacts at the spectrogram edges.
.IP \fB\-r\fR
Raw spectrogram: suppress the display of axes and legends.
.IP \fB\-A\fR
Selects an alternative, fixed colour-set.  This is provided only for
compatibility with spectrograms produced by another package.  It should
not normally be used as it has some problems, not least, a lack of
differentiation at the bottom end which results in masking of low-level
artefacts.
.IP \fB\-t\ \fItext\fR
Set the image title\*mtext to display above the spectrogram.
.IP \fB\-c\ \fItext\fR
Set (or clear) the image comment\*mtext to display below and to the
left of the spectrogram.
.IP \fB\-o\ \fIfile\fR
Name of the spectrogram output PNG file, default `spectrogram.png'.
If `-' is given, the spectrogram will be sent to standard output
(stdout).
.RE
.TP
\ 
.I Advanced Options:
.br
In order to process a smaller section of audio without affecting other
effects or the output signal (unlike when the
.B trim
effect is used), the following options may be used.
.RS
.IP \fB\-d\ \fIduration\fR
This option sets the X-axis resolution such that audio with the given
.I duration
(a time specification) fits the selected (or default) X-axis width.  For
example,
.EX
   sox input.mp3 output.wav \-n spectrogram \-d 1:00 stats
.EE
creates a spectrogram showing the first minute of the audio, whilst
.EE
the
.B stats
effect is applied to the entire audio signal.
.SP
See also
.B \-X
for an alternative way of setting the X-axis resolution.
.IP \fB\-S\ \fIposition(=)\fR
Start the spectrogram at the given point in the audio stream.  For
example
.EX
   sox input.aiff output.wav spectrogram \-S 1:00
.EE
creates a spectrogram showing all but the first minute of the audio
(the output file, however, receives the entire audio stream).
.RE
.TP
\ 
For the ability to perform off-line processing of spectral data, see the
.B stat
effect.
.TP
\fBspeed \fIfactor\fR[\fBc\fR]
Adjust the audio speed (pitch and tempo together).  \fIfactor\fR
is either the ratio of the new speed to the old speed: greater
than 1 speeds up, less than 1 slows down, or, if appended with the
letter
`c', the number of cents (i.e. 100ths of a semitone) by
which the pitch (and tempo) should be adjusted: greater than 0
increases, less than 0 decreases.
.SP
Technically, the speed effect only changes the sample rate information,
leaving the samples themselves untouched.  The \fBrate\fR effect is invoked
automatically to resample to the output sample rate, using its default
quality/speed.  For higher quality or higher speed
resampling, in addition to the \fBspeed\fR effect, specify
the \fBrate\fR effect with the desired quality option.
.SP
See also the \fBbend\fR, \fBpitch\fR,
and
.B tempo
effects.
.TP
\fBsplice \fR [\fB\-h\fR\^|\^\fB\-t\fR\^|\^\fB\-q\fR] { \fIposition(=)\fR[\fB,\fIexcess\fR[\fB,\fIleeway\fR]] }
Splice together audio sections.  This effect provides two things over
simple audio concatenation: a (usually short) cross-fade is applied at
the join, and a wave similarity comparison is made to help determine the
best place at which to make the join.
.SP
One of the options
.BR \-h ,
.BR \-t ,
or
.B \-q
may be given to select the fade envelope as half-cosine wave (the default),
triangular (a.k.a. linear), or quarter-cosine wave respectively.
.TS
center;
cI lI lI lI
cB l l l.
Type	Audio	Fade level	Transitions
t	correlated	constant gain	abrupt
h	correlated	constant gain	smooth
q	uncorrelated	constant power	smooth
.TE
.DT
.SP
To perform a splice, first use the
.B trim
effect to select the audio sections to be joined together.  As when
performing a tape splice, the end of the section to be spliced onto
should be trimmed with a small
.I excess
(default 0\*d005 seconds) of audio after the ideal joining point.  The
beginning of the audio section to splice on should be trimmed with the
same
.IR excess
(before the ideal joining point), plus an additional
.I leeway
(default 0\*d005 seconds).  Any time specification may be used for these
parameters.  SoX should then be invoked with the two
audio sections as input files and the
.B splice
effect given with the position at which to perform the splice\*mthis is
length of the first audio section (including the excess).
.SP
The following diagram uses the tape analogy to illustrate the splice
operation.  The effect simulates the diagonal cuts and joins the two pieces:
.EX

      length1   excess
    -----------><--->
    _________   :   :  _________________
             \\  :   : :\\     `         
              \\ :   : : \\     `        
               \\:   : :  \\     `       
                *   : :   * - - *      
                 \\  : :   :\\     `     
                  \\ : :   : \\     `    
    _______________\\: :   :  \\_____`____
                      :   :   :     :
                      <--->   <----->
                      excess  leeway

.EE
where * indicates the joining points.
.SP
For example, a long song begins with two verses which start (as
determined e.g. by using the
.B play
command with the
.B trim
(\fIstart\fR) effect) at times 0:30\*d125 and 1:03\*d432.
The following commands cut out the first verse:
.EX
   sox too-long.wav part1.wav trim 0 30.130
.EE
(5 ms excess, after the first verse starts)
.EX
   sox too-long.wav part2.wav trim 1:03.422
.EE
(5 ms excess plus 5 ms leeway, before the second verse starts)
.EX
   sox part1.wav part2.wav just-right.wav splice 30.130
.EE
For another example, the SoX command
.EX
   play "|sox \-n \-p synth 1 sin %1" "|sox \-n \-p synth 1 sin %3"
.EE
generates and plays two notes, but there is a nasty click at the
transition; the click can be removed by splicing instead of
concatenating the audio, i.e. by appending \fBsplice 1\fR to the
command. (Clicks at the beginning and end of the audio can be removed by
\fIpreceding\fR the splice effect with \fBfade q .01 2 .01\fR).
.SP
Provided your arithmetic is good enough, multiple splices can be
performed with a single
.B splice
invocation.  For example:
.EX
#!/bin/sh
# Audio Copy and Paste Over
# acpo infile copy-start copy-stop paste-over-start outfile
# No chained time specifications allowed for the parameters
# (i.e. such that contain +/\-).
e=0.005                      # Using default excess
l=$e                         # and leeway.
sox "$1" piece.wav trim $2\-$e\-$l =$3+$e
sox "$1" part1.wav trim 0 $4+$e
sox "$1" part2.wav trim $4+$3\-$2\-$e\-$l
sox part1.wav piece.wav part2.wav "$5" \\
   splice $4+$e +$3\-$2+$e+$l+$e
.EE
In the above Bourne shell script,
two splices are used to `copy and paste' audio.
.TS
center;
c8 c8 c.
*	*	*
.TE
.DT
.SP
It is also possible to use this effect to perform general cross-fades,
e.g. to join two songs.  In this case,
.I excess
would typically be an number of seconds, the
.B \-q
option would typically be given (to select an `equal power' cross-fade), and
.I leeway
should be zero (which is the default if
.B \-q
is given).  For example, if f1.wav and f2.wav are audio files
to be cross-faded, then
.EX
   sox f1.wav f2.wav out.wav splice \-q $(soxi \-D f1.wav),3
.EE
cross-fades the files where the point of equal loudness is 3 seconds
before the end of f1.wav, i.e. the total length of the cross-fade is
2 \(mu 3 = 6 seconds (Note: the $(...) notation is POSIX shell).
.TP
\fBstat\fR [\fB\-s \fIscale\fR] [\fB\-rms\fR] [\fB\-freq\fR] [\fB\-v\fR] [\fB\-d\fR]
Display time and frequency domain statistical information about the audio.
Audio is passed unmodified through the SoX processing chain.
.SP
The information is output to the `standard error' (stderr) stream and is
calculated, where
.I n
is the duration of the audio in samples,
.I c
is the number of audio channels,
.I r
is the audio sample rate, and
.I x\s-2\dk\u\s0
represents the PCM value (in the range \-1 to +1 by default) of each successive
sample in the audio,
as follows:
.TS
center;
lI l l.
Samples read	\fIn\fR\^\(mu\^\fIc\fR	\ 
Length (seconds)	\fIn\fR\^\(di\^\fIr\fR
Scaled by	\ 	See \-s below.
Maximum amplitude	max(\fIx\s-2\dk\u\s0\fR)	T{
The maximum sample value in the audio; usually this will be a positive number.
T}
Minimum amplitude	min(\fIx\s-2\dk\u\s0\fR)	T{
The minimum sample value in the audio; usually this will be a negative number.
T}
Midline amplitude	\(12\^min(\fIx\s-2\dk\u\s0\fR)\^+\^\(12\^max(\fIx\s-2\dk\u\s0\fR)
Mean norm	\(S1/\s-2n\s+2\^\(*S\^\^\(br\^\fIx\s-2\dk\u\s0\fR\^\(br\^	T{
The average of the absolute value of each sample in the audio.
T}
Mean amplitude	\(S1/\s-2n\s+2\^\(*S\^\fIx\s-2\dk\u\s0\fR	T{
The average of each sample in the audio.  If this figure is non-zero, then it indicates the
presence of a D.C. offset (which could be removed using the
.B dcshift
effect).
T}
RMS amplitude	\(sr(\(S1/\s-2n\s+2\^\(*S\^\fIx\s-2\dk\u\s0\fR\(S2)	T{
The level of a D.C. signal that would have the same power
as the audio's average power.
T}
Maximum delta	max(\^\(br\^\fIx\s-2\dk\u\s0\fR\^\-\^\fIx\s-2\dk\-1\u\s0\fR\^\(br\^)
Minimum delta	min(\^\(br\^\fIx\s-2\dk\u\s0\fR\^\-\^\fIx\s-2\dk\-1\u\s0\fR\^\(br\^)
Mean delta	\(S1/\s-2n\-1\s+2\^\(*S\^\^\(br\^\fIx\s-2\dk\u\s0\fR\^\-\^\fIx\s-2\dk\-1\u\s0\fR\^\(br\^
RMS delta	\(sr(\(S1/\s-2n\-1\s+2\^\(*S\^(\fIx\s-2\dk\u\s0\fR\^\-\^\fIx\s-2\dk\-1\u\s0\fR)\(S2)
Rough frequency	\ 	In Hz.
Volume Adjustment	\ 	T{
The parameter to the
.B vol
effect which would make the audio as loud as possible without clipping.
Note: See the discussion on
.B Clipping
above for reasons why it is rarely a good idea actually to do this.
T}
.TE
.DT
.SP
Note that the delta measurements are not applicable for multi-channel audio.
.SP
The
.B \-s
option can be used to scale the input data by a given factor.
The default value of
.I scale
is 2147483647 (i.e. the maximum value of a 32-bit signed integer).
Internal effects
always work with signed long PCM data and so the value should relate to this
fact.
.SP
The
.B \-rms
option will convert all output average values to `root mean square'
format.
.SP
The
.B \-v
option displays only the `Volume Adjustment' value.
.SP
The
.B \-freq
option calculates the input's power spectrum (4096 point DFT) instead of the
statistics listed above.  This should only be used with a single channel
audio file.
.SP
The
.B \-d
option
displays a hex dump of the 32-bit signed PCM data
audio in SoX's internal buffer.
This is mainly used to help track down endian problems that
sometimes occur in cross-platform versions of SoX.
.SP
See also the
.B stats
effect.
.TP
\fBstats\fR [\fB\-b \fIbits\fR\^|\^\fB\-x \fIbits\fR\^|\^\fB\-s \fIscale\fR] [\fB\-w \fIwindow-time\fR]
Display time domain statistical information about the audio channels;
audio is passed unmodified through the SoX processing chain.
Statistics are calculated and displayed for each audio channel and,
where applicable, an overall figure is also given.
.SP
For example, for a typical well-mastered stereo music file:
.TS
center;
l.
.ft CW
             Overall     Left      Right
DC offset   0.000803 \-0.000391  0.000803
Min level  \-0.750977 \-0.750977 \-0.653412
Max level   0.708801  0.708801  0.653534
Pk lev dB      \-2.49     \-2.49     \-3.69
RMS lev dB    \-19.41    \-19.13    \-19.71
RMS Pk dB     \-13.82    \-13.82    \-14.38
RMS Tr dB     \-85.25    \-85.25    \-82.66
Crest factor       \-      6.79      6.32
Flat factor     0.00      0.00      0.00
Pk count           2         2         2
Bit-depth      16/16     16/16     16/16
Num samples    7.72M
Length s     174.973
Scale max   1.000000
Window s       0.050
.ft R
.TE
.DT
.SP
.IR DC\ offset ,
.IR Min\ level ,
and
.I Max\ level
are shown, by default, in the range \(+-1.
If the
.B \-b
(bits) options is given, then these three measurements will be scaled to a signed integer
with the given number of bits; for example, for 16 bits, the scale would be \-32768 to +32767.
The
.B \-x
option behaves the same way as
.B \-b
except that the signed integer values are displayed in hexadecimal.
The
.B \-s
option scales the three measurements by a given floating-point number.
.SP
.I Pk\ lev\ dB
and
.I RMS\ lev\ dB
are standard peak and RMS level measured in dBFS.
.I RMS\ Pk\ dB
and
.I RMS\ Tr\ dB
are peak and trough values for RMS level measured over a short window (default 50ms).
.SP
.I Crest\ factor
is the standard ratio of peak to RMS level (note: not in dB).
.SP
.I Flat\ factor
is a measure of the flatness (i.e. consecutive samples with the same value) of the signal at
its peak levels (i.e. either
.IR Min\ level ,
or
.IR Max\ level ).
.I Pk\ count
is the number of occasions (not the number of samples) that the signal attained either
.IR Min\ level ,
or
.IR Max\ level .
.SP
The right-hand
.I Bit-depth
figure is the standard definition of bit-depth i.e. bits less
significant than the given number are fixed at zero.  The left-hand
figure is the number of most significant bits that are fixed at zero (or
one for negative numbers) subtracted from the right-hand figure (the
number subtracted is directly related to
.IR Pk\ lev\ dB ).
.SP
For multi-channel audio, an overall figure for each of the above
measurements is given and derived from the channel figures as follows:
.IR DC\ offset :
maximum magnitude;
.IR Max\ level ,
.IR Pk\ lev\ dB ,
.IR RMS\ Pk\ dB ,
.IR Bit-depth :
maximum;
.IR Min\ level ,
.IR RMS\ Tr\ dB :
minimum;
.IR RMS\ lev\ dB ,
.IR Flat\ factor ,
.IR Pk\ count :
average;
.IR Crest\ factor :
not applicable.
.SP
.I Length\ s
is the duration in seconds of the audio, and
.I Num\ samples
is equal to the sample-rate multiplied by
.IR Length .
.I Scale\ Max
is the scaling applied to the first three measurements;
specifically, it is the maximum value that could apply to
.IR Max\ level .
.I Window\ s
is the length of the window used for the peak and trough RMS measurements.
.SP
See also the
.B stat
effect.
.TP
\fBswap\fR
Swap stereo channels.  If the input is not stereo, pairs of channels are
swapped, and a possible odd last channel passed through.  E.g., for seven
channels, the output order will be 2, 1, 4, 3, 6, 5, 7.
.SP
See also
.B remix
for an effect that allows arbitrary channel selection and ordering
(and mixing).
.TP
\fBstretch \fIfactor\fR [\fIwindow fade shift fading\fR]
Change the audio duration (but not its pitch).
This effect is broadly equivalent to the
.B tempo
effect with (\fIfactor\fR inverted and)
.I search
set to zero, so in general, its results are comparatively poor;
it is retained as it can sometimes out-perform
.B tempo
for small
.IR factor s.
.SP
.I factor
of stretching: >1 lengthen, <1 shorten duration.
.I window
size is in ms.  Default is 20ms.  The
.I fade
option, can be `lin'.
.I shift
ratio, in [0 1].  Default depends on stretch factor. 1
to shorten, 0\*d8 to lengthen.  The
.I fading
ratio, in [0 0\*d5].  The amount of a fade's default depends on
.I factor
and \fIshift\fR.
.SP
See also the
.B tempo
effect.
.na
.TP
\fBsynth\fR [\fB\-j \fIKEY\fR] [\fB\-n\fR] [\fIlen\fR [\fIoff\fR [\fIph\fR [\fIp1\fR [\fIp2\fR [\fIp3\fR]]]]]] {[\fItype\fR] [\fIcombine\fR] \:[[\fB%\fR]\fIfreq\fR[\fBk\fR][\fB:\fR\^|\^\fB+\fR\^|\^\fB/\fR\^|\^\fB\-\fR[\fB%\fR]\fIfreq2\fR[\fBk\fR]]] [\fIoff\fR [\fIph\fR [\fIp1\fR [\fIp2\fR [\fIp3\fR]]]]]}
.ad
This effect can be used to generate fixed or swept frequency audio tones
with various wave shapes, or to generate wide-band noise of various
`colours'.
Multiple synth effects can be cascaded to produce more complex
waveforms; at each stage it is possible to choose whether the generated
waveform will be mixed with, or modulated onto
the output from the previous stage.
Audio for each channel in a multi-channel audio file can be synthesised
independently.
.SP
Though this effect is used to generate audio, an input file must still
be given, the characteristics of which will be used to set the
synthesised audio length, the number of channels, and the sampling rate;
however, since the input file's audio is not normally needed, a `null
file' (with the special name \fB\-n\fR) is often given instead (and the
length specified as a parameter to \fBsynth\fR or by another given
effect that has an associated length).
.SP
For example, the following produces a 3 second, 48kHz,
audio file containing a sine-wave swept from 300 to 3300\ Hz:
.EX
   sox \-n output.wav synth 3 sine 300\-3300
.EE
and this produces an 8\ kHz version:
.EX
   sox \-r 8000 \-n output.wav synth 3 sine 300\-3300
.EE
Multiple channels can be synthesised by specifying the set of
parameters shown between braces multiple times;
the following puts the swept tone in the left channel and adds `brown'
noise in the right:
.EX
   sox \-n output.wav synth 3 sine 300\-3300 brownnoise
.EE
The following example shows how two synth effects can be cascaded
to create a more complex waveform:
.EX
.ne 2
   play \-n synth 0.5 sine 200\-500 synth 0.5 sine fmod 700\-100
.EE
Frequencies can also be given in `scientific' note notation, or, by
prefixing a `%' character, as a number of semitones relative to
`middle A' (440\ Hz).  For example, the following could be used to
help tune a guitar's low `E' string:
.EX
   play \-n synth 4 pluck %\-29
.EE
or with a (Bourne shell) loop, the whole guitar:
.EX
.ne 2
   for n in E2 A2 D3 G3 B3 E4; do
	play \-n synth 4 pluck $n repeat 2; done
.EE
See the
.B delay
effect (above) and the reference to `SoX scripting examples' (below)
for more
.B synth
examples.
.SP
.B N.B.
This effect generates audio at maximum volume (0dBFS), which means that there
is a high chance of clipping when using the audio subsequently, so
in many cases, you will want to follow this effect with the \fBgain\fR
effect to prevent this from happening. (See also
.B Clipping
above.)
Note that, by default, the
.B synth
effect incorporates the functionality of \fBgain \-h\fR (see the
.B gain
effect for details);
.BR synth 's
.B \-n
option may be given to disable this behaviour.
.SP
A detailed description of each
.B synth
parameter follows:
.SP
\fIlen\fR is the length of audio to synthesise (any time specification);
a value of 0 indicated to use the input length, which is also the default.
.SP
\fItype\fR is one of sine, square, triangle, sawtooth, trapezium, exp,
[white]noise, tpdfnoise, pinknoise, brownnoise, pluck; default=sine.
.SP
\fIcombine\fR is one of create, mix, amod (amplitude modulation), fmod
(frequency modulation); default=create.
.SP
\fIfreq\fR/\fIfreq2\fR are the frequencies at the beginning/end of
synthesis in Hz or, if preceded with `%', semitones relative to A
(440\ Hz); alternatively, `scientific' note notation (e.g. E2) may
be used.  The default frequency is 440Hz.  By default, the tuning used
with the note notations is `equal temperament'; the
.B \-j
.I KEY
option selects `just intonation', where
.I KEY
is an integer number of semitones relative to A (so for example, \-9
or 3 selects the key of C), or a note in scientific notation.
.SP
If
.I freq2
is given, then
.I len
must also have been given and the generated tone will be swept between
the given frequencies.  The two given frequencies must be separated by
one of the characters `:', `+', `/', or `\-'.  This character is used to
specify the sweep function as follows:
.RS
.IP \fB:\fR
Linear: the tone will change by a fixed number of hertz per second.
.IP \fB+\fR
Square: a second-order function is used to change the tone.
.IP \fB/\fR
Exponential: the tone will change by a fixed number of semitones per second.
.IP \fB\-\fR
Exponential: as `/', but initial phase always zero, and stepped (less
smooth) frequency changes.
.RE
.TP
\ 
Not used for noise.
.SP
\fIoff\fR is the bias (DC-offset) of the signal in percent; default=0.
.SP
\fIph\fR is the phase shift in percentage of 1 cycle; default=0.  Not
used for noise.
.SP
\fIp1\fR is the percentage of each cycle that is `on' (square), or
`rising' (triangle, exp, trapezium); default=50 (square, triangle, exp),
default=10 (trapezium), or sustain (pluck); default=40.
.SP
\fIp2\fR (trapezium): the percentage through each cycle at which `falling'
begins; default=50. exp: the amplitude in multiples of 2dB; default=50,
or tone-1 (pluck); default=20.
.SP
\fIp3\fR (trapezium): the percentage through each cycle at which `falling'
ends; default=60, or tone-2 (pluck); default=90.
.TP
\fBtempo \fR[\fB\-q\fR] [\fB\-m\fR\^|\^\fB\-s\fR\^|\^\fB\-l\fR] \fIfactor\fR [\fIsegment\fR [\fIsearch\fR [\fIoverlap\fR]]]
Change the audio playback speed but not its pitch. This effect uses the
WSOLA algorithm. The audio is chopped up into segments which are then
shifted in the time domain and overlapped (cross-faded) at points where
their waveforms are most similar as determined by measurement of `least
squares'.
.SP
By default, linear searches are used to find the best overlapping
points. If the optional
.B \-q
parameter is given, tree searches are used instead. This makes the effect
work more quickly, but the result may not sound as good. However, if you
must improve the processing speed, this generally reduces the sound quality
less than reducing the search or overlap values.
.SP
The
.B \-m
option is used to optimize default values of segment, search and
overlap for music processing.
.SP
The
.B \-s
option is used to optimize default values of segment, search and
overlap for speech processing.
.SP
The
.B \-l
option is used to optimize default values of segment, search and
overlap for `linear' processing that tends to cause more
noticeable distortion but may be useful when factor is close to 1.
.SP
If \-m, \-s, or \-l is specified, the default value of segment will be
calculated based on factor, while default search and overlap values are
based on segment. Any values you provide still override these default
values.
.SP
.I factor
gives the ratio of new tempo to the old tempo, so e.g. 1.1 speeds up the
tempo by 10%, and 0.9 slows it down by 10%.
.SP
The optional
.I segment
parameter selects the algorithm's segment size in milliseconds.  If no other
flags are specified, the default value is 82 and is typically suited to
making small changes to the tempo of music. For larger changes (e.g. a factor
of 2), 41\ ms may give a better result.  The \-m, \-s, and \-l flags will cause
the segment default to be automatically adjusted based on factor.
For example using \-s (for speech) with a tempo of 1.25 will calculate a
default segment value of 32.
.SP
The optional
.I search
parameter gives the audio length in milliseconds over which
the algorithm will search for overlapping points.  If no other
flags are specified, the default value is 14.68.  Larger values use
more processing time and may or may not produce better results.
A practical maximum is half the value of segment. Search
can be reduced to cut processing time at the risk of degrading output
quality. The \-m, \-s, and \-l flags will cause
the search default to be automatically adjusted based on segment.
.SP
The optional
.I overlap
parameter gives the segment overlap length in milliseconds.
Default value is 12, but \-m, \-s, or \-l flags automatically
adjust overlap based on segment size. Increasing overlap increases
processing time and may increase quality. A practical maximum for overlap
is the value of search, with overlap typically being (at least) a little
smaller then search.
.SP
See also
.B speed
for an effect that changes tempo and pitch together,
.B pitch
and \fBbend\fR for effects that change pitch only, and
.B stretch
for an effect that changes tempo using a different algorithm.
.TP
\fBtreble \fIgain\fR [\fIfrequency\fR[\fBk\fR]\fR [\fIwidth\fR[\fBs\fR\^|\^\fBh\fR\^|\^\fBk\fR\^|\^\fBo\fR\^|\^\fBq\fR]]]
Apply a treble tone-control effect.
See the description of the \fBbass\fR effect for details.
.TP
\fBtremolo \fIspeed\fR [\fIdepth\fR]
Apply a tremolo (low frequency amplitude modulation) effect to the audio.
The tremolo frequency in Hz is given by
.IR speed ,
and the depth as a percentage by
.I depth
(default 40).
.TP
\fBtrim\fR {\fIposition(+)\fR}
Cuts portions out of the audio.  Any number of \fIposition\fRs may be
given; audio is not sent to the output until the first \fIposition\fR
is reached.  The effect then alternates between copying and discarding
audio at each \fIposition\fR.  Using a value of 0 for the first \fIposition\fR
parameter allows copying from the beginning of the audio.
.SP
For example,
.EX
   sox infile outfile trim 0 10
.EE
will copy the first ten seconds, while
.EX
   play infile trim 12:34 =15:00 -2:00
.EE
and
.EX
   play infile trim 12:34 2:26 -2:00
.EE
will both play from 12 minutes 34 seconds into the audio up to 15 minutes into
the audio (i.e. 2 minutes and 26 seconds long), then resume playing two
minutes before the end of audio.
.TP
\fBupsample\fR [\fIfactor\fR]
Upsample the signal by an integer factor: \fIfactor\fR\-1 zero-value
samples are inserted between each pair of input samples.  As a result, the
original spectrum is replicated into the new frequency space (imaging) and
attenuated.  This attenuation can be compensated for by adding
\fBvol \fIfactor\fR after any further processing.  The upsample effect is
typically used in combination with filtering effects.
.SP
For a general resampling effect with anti-imaging, see \fBrate\fR.  See
also \fBdownsample\fR.
.TP
\fBvad \fR[\fIoptions\fR]
Voice Activity Detector.  Attempts to trim silence and quiet
background sounds from the ends of (fairly high resolution
i.e. 16-bit, 44\-48kHz) recordings of speech.  The algorithm currently
uses a simple cepstral power measurement to detect voice, so may be
fooled by other things, especially music.  The effect can trim only
from the front of the audio, so in order to trim from the back, the
.B reverse
effect must also be used.  E.g.
.EX
   play speech.wav norm vad
.EE
to trim from the front,
.EX
   play speech.wav norm reverse vad reverse
.EE
to trim from the back, and
.EX
   play speech.wav norm vad reverse vad reverse
.EE
to trim from both ends.  The use of the
.B norm
effect is recommended, but remember that neither
.B reverse
nor
.B norm
is suitable for use with streamed audio.
.SP
.I Options:
.br
Default values are shown in parenthesis.
.RS
.IP \fB\-t\ \fInum\fR\ (7)
The measurement level used to trigger activity detection.  This might
need to be changed depending on the noise level, signal level and
other charactistics of the input audio.
.IP \fB\-T\ \fInum\fR\ (0.25)
The time constant (in seconds) used to help ignore short bursts of
sound.
.IP \fB\-s\ \fInum\fR\ (1)
The amount of audio (in seconds) to search for quieter/shorter bursts
of audio to include prior to the detected trigger point.
.IP \fB\-g\ \fInum\fR\ (0.25)
Allowed gap (in seconds) between quieter/shorter bursts of audio to
include prior to the detected trigger point.
.IP \fB\-p\ \fInum\fR\ (0)
The amount of audio (in seconds) to preserve before the trigger point
and any found quieter/shorter bursts.
.RE
.TP
\ 
.I Advanced Options:
.br
These allow fine tuning of the algorithm's internal parameters.
.RS
.IP \fB\-b\ \fInum\fR
The algorithm (internally) uses adaptive noise estimation/reduction in
order to detect the start of the wanted audio.  This option sets the
time for the initial noise estimate.
.IP \fB\-N\ \fInum\fR
Time constant used by the adaptive noise estimator for when the noise
level is increasing.
.IP \fB\-n\ \fInum\fR
Time constant used by the adaptive noise estimator for when the noise
level is decreasing.
.IP \fB\-r\ \fInum\fR
Amount of noise reduction to use in the detection algorithm (e.g. 0,
0.5, ...).
.IP \fB\-f\ \fInum\fR
Frequency of the algorithm's processing/measurements.
.IP \fB\-m\ \fInum\fR
Measurement duration; by default, twice the measurement period; i.e.
with overlap.
.IP \fB\-M\ \fInum\fR
Time constant used to smooth spectral measurements.
.IP \fB\-h\ \fInum\fR
`Brick-wall' frequency of high-pass filter applied at the input to the
detector algorithm.
.IP \fB\-l\ \fInum\fR
`Brick-wall' frequency of low-pass filter applied at the input to the
detector algorithm.
.IP \fB\-H\ \fInum\fR
`Brick-wall' frequency of high-pass lifter used in the detector
algorithm.
.IP \fB\-L\ \fInum\fR
`Brick-wall' frequency of low-pass lifter used in the detector
algorithm.
.RE
.TP
\ 
See also the
.B silence
effect.
.TP
\fBvol \fIgain\fR [\fItype\fR [\fIlimitergain\fR]]
Apply an amplification or an attenuation to the audio signal.
Unlike the
.B \-v
option (which is used for balancing multiple input files as they enter the
SoX effects processing chain),
.B vol
is an effect like any other so can be applied anywhere, and several times
if necessary, during the processing chain.
.SP
The amount to change the volume is given by
.I gain
which is interpreted, according to the given \fItype\fR, as follows: if
.I type
is \fBamplitude\fR (or is omitted), then
.I gain
is an amplitude (i.e. voltage or linear) ratio,
if \fBpower\fR, then a power (i.e. wattage or voltage-squared) ratio,
and if \fBdB\fR, then a power change in dB.
.SP
When
.I type
is \fBamplitude\fR or \fBpower\fR, a
.I gain
of 1 leaves the volume unchanged,
less than 1 decreases it,
and greater than 1 increases it;
a negative
.I gain
inverts the audio signal in addition to adjusting its volume.
.SP
When
.I type
is \fBdB\fR, a
.I gain
of 0 leaves the volume unchanged,
less than 0 decreases it,
and greater than 0 increases it.
.SP
See [4]
for a detailed discussion on electrical (and hence audio signal)
voltage and power ratios.
.SP
Beware of
.B Clipping
when the increasing the volume.
.SP
The
.I gain
and the
.I type
parameters can be concatenated if desired, e.g.
.BR "vol 10dB" .
.SP
An optional \fIlimitergain\fR value can be specified and should be a
value much less
than 1 (e.g. 0\*d05 or 0\*d02) and is used only on peaks to prevent clipping.
Not specifying this parameter will cause no limiter to be used.  In verbose
mode, this effect will display the percentage of the audio that needed to be
limited.
.SP
See also
.B gain
for a volume-changing effect with different capabilities, and
.B compand
for a dynamic-range compression/expansion/limiting effect.
.SH DIAGNOSTICS
Exit status is 0 for no error, 1 if there is a problem with the
command-line parameters, or 2 if an error occurs during file processing.
.SH BUGS
Please report any bugs found in this version of SoX to the mailing list
(sox-users@lists.sourceforge.net).
.SH SEE ALSO
.BR soxi (1),
.BR soxformat (7),
.BR libsox (3)
.br
.BR audacity (1),
.BR gnuplot (1),
.BR octave (1),
.BR wget (1)
.br
The SoX web site at http://sox.sourceforge.net
.br
SoX scripting examples at http://sox.sourceforge.net/Docs/Scripts
.SS References
.TP
[1]
R. Bristow-Johnson,
.IR "Cookbook formulae for audio EQ biquad filter coefficients" ,
http://musicdsp.org/files/Audio-EQ-Cookbook.txt
.TP
[2]
Wikipedia,
.IR "Q-factor" ,
http://en.wikipedia.org/wiki/Q_factor
.TP
[3]
Scott Lehman,
.IR "Effects Explained" ,
http://harmony-central.com/Effects/effects-explained.html
.TP
[4]
Wikipedia,
.IR "Decibel" ,
http://en.wikipedia.org/wiki/Decibel
.TP
[5]
Richard Furse,
.IR "Linux Audio Developer's Simple Plugin API" ,
http://www.ladspa.org
.TP
[6]
Richard Furse,
.IR "Computer Music Toolkit" ,
http://www.ladspa.org/cmt
.TP
[7]
Steve Harris,
.IR "LADSPA plugins" ,
http://plugin.org.uk
.SH LICENSE
Copyright 1998\-2013 Chris Bagwell and SoX Contributors.
.br
Copyright 1991 Lance Norskog and Sundry Contributors.
.SP
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
.SP
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
.SH AUTHORS
Chris Bagwell (cbagwell@users.sourceforge.net).
Other authors and contributors are listed in the ChangeLog file that
is distributed with the source code.