1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
# -*- indent-tabs-mode: t -*-
#!/usr/bin/env python
# Soya 3D tutorial
# Copyright (C) 2004 Jean-Baptiste 'Jiba' LAMY
# Copyright (C) 2001-2002 Bertrand 'blam!' LAMY
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
# buggy: ODE
# Need pi and stuff
from math import *
# Imports and inits Soya (see lesson basic-1.py).
import sys, os, os.path, soya, soya.sdlconst as sdl
from soya import ode
soya.init()
soya.path.append(os.path.join(os.path.dirname(sys.argv[0]), "data"))
# Creates the scene.
scene = ode.World()
scene.gravity = (0.0, -9.8, 0.0)
# Create a collision space
print "creating space"
space = ode.HashSpace(scene)
# Creates a new landscape in the scene.
print "creating land"
land = soya.Land(scene)
# Gets the image "map1.png" from the tutorial data dir, and create the landscape
# from this image. The image dimension must be power of 2 plus 1 : (2 ** n) + 1.
print "setting land's image"
land.from_image(soya.Image.get("map1.png"))
# By default, the landscape height ranges from 0.0 (black pixels) to 1.0 (white pixels).
# Here, we multiply the height by 4.0 so it ranges from 0.0 to 4.0.
print "multiplying height"
land.multiply_height(1.0)
# Now that we have the landscape, we are going to texture it
# (see lesson modeling-material-2 about texturing). First, we creates two textured
# materials.
print "making materials"
material1 = soya.Material(soya.Image.get("block2.png"))
material2 = soya.Material(soya.Image.get("metal1.png"))
# asigns MATERIAL1 to any point whose height is in the range 0.0-6.0, and material2 to
# any point whose height is in the range 6.0-8.0 (remember, height ranges from 0.0 to 8.0).
print "setting land's materials"
land.set_material_layer(material1, 0.0, 3.0)
land.set_material_layer(material2, 3.0, 4.0)
# Assigns material1 to any point whose height is in the range 0.0-8.0 and if the angle
# between the surface normal and the verticalvector is in the range 0.0-20.0.
#land.set_material_layer_angle(material1, 0.0, 8.0, 0.0, 20.0)
# Now we set some Land attributes:
# - texture_factor specifies how much the textures are zoomed (higher values mean
# smaller texture)
# - scale_factor specifies how the landscape is scaled in the 2 horizontal dimensions.
# - the 2 last attributes influence the behaviour of the level of detail (LOD) algorithm
# (LOD means that parts of the landscape are rendered with more detail / more triangle
# if they are close to the camera). They are a trading between speed and quality.
#
# The higher split_factor is, the better precision you have (it means more triangles
# to draw the Land even far from Camera).
# the values below are the default ones.
land.texture_factor = 1.0
# XXX for some reason collisions don't work if this is set to anything other
# than 1.0
land.scale_factor = 1.0
land.split_factor = 2.0
# Moves the landscape.
land.y = -2.5
#land.scale(8.0, 1.0, 8.0)
# Make sure not to modify the land once the simulation starts, because
# the AABB is not recalculated
land_geom = ode.GeomLand(land, space)
land_geom.set_xyz(0.0, -2.5, 0.0)
#land_geom = ode.Land(land, space)
#print land_geom.getAABB()
# Adds a light.
light = soya.Light(scene)
light.set_xyz(0.0, 30.0, 0.0)
class Car(ode.Body):
speed = 3.0
def __init__(self, scene):
# Set initial turn angle to 0
# XXX should do Ackerman steering and probably differential
# drive on the rear wheels
self.turn_angle = 0.0
print "making SimpleSpace"
self.space = ode.SimpleSpace(None, space)
print "setting car's shape"
car_shape = soya.Shape.load("buggy_chassis")
print "Initializing body"
ode.Body.__init__(self, scene, shape=car_shape)
print "Creating chassis geom"
#self.chassis_geom = ode.GeomShape(self, self.space)
print "setting car's mass"
car_mass = ode.Mass()
car_mass.setBox(1.0, 5.0, 2.0, 4.0)
car_mass.adjust(7.0)
self.mass = car_mass
print "making wheel mass object"
# Create the wheels
wheel_shape = soya.Shape.load("wheel4")
wheel_mass = ode.Mass()
wheel_mass.setSphere(1.0, 1.0)
wheel_mass.adjust(1.0)
self.wheels = []
# Make sure the wheel geoms don't get garbage collected
# XXX this shouldn't be necessary
self.wheel_geoms = []
print "making wheels"
for i in range(4):
wheel = ode.Body(scene, shape=wheel_shape)
wheel.mass = wheel_mass
wheel_geom = ode.GeomSphere(wheel, self.space, 1.0)
#wheel_geom = ode.GeomShape(wheel, space)
self.wheel_geoms.append(wheel_geom)
self.wheels.append(wheel)
print "setting wheels' positions"
self.wheels[0].set_xyz(2.5, 0.0, -2.0)
self.wheels[1].set_xyz(2.5, 0.0, 2.0)
self.wheels[2].set_xyz(-2.5, 0.0, -2.0)
self.wheels[3].set_xyz(-2.5, 0.0, 2.0)
self.wheel_joints = []
for i in range(4):
joint = ode.Hinge2Joint(scene)
joint.attach(self, self.wheels[i])
joint.anchor = (self.wheels[i].x, self.wheels[i].y, self.wheels[i].z)
joint.axis1 = (0.0, 1.0, 0.0)
joint.axis2 = (0.0, 0.0, 1.0)
joint.suspension_erp = 0.25
joint.suspension_cfm = 0.004
joint.velocity2 = 0.0
joint.fmax2 = 120.0
# Only set stops on the back wheels. The controller for the
# front wheels will handle them.
if i > 2:
joint.lo_stop = 0.0
joint.hi_stop = 0.0
joint.fmax = 120.0
self.wheel_joints.append(joint)
def begin_round(self):
ode.Body.begin_round(self)
for event in soya.process_event():
if event[0] == sdl.KEYDOWN:
if event[1] == sdl.K_UP:
for joint in self.wheel_joints:
joint.velocity2 = self.speed
elif event[1] == sdl.K_DOWN:
for joint in self.wheel_joints:
joint.velocity2 = -self.speed
elif event[1] == sdl.K_LEFT:
self.turn_angle = -0.25 * pi
elif event[1] == sdl.K_RIGHT:
self.turn_angle = 0.25 * pi
elif event[1] == sdl.K_q:
soya.IDLER.stop()
elif event[1] == sdl.K_r:
self.wheels[0].set_xyz(2.5, 0.0, -2.0)
self.wheels[1].set_xyz(2.5, 0.0, 2.0)
self.wheels[2].set_xyz(-2.5, 0.0, -2.0)
self.wheels[3].set_xyz(-2.5, 0.0, 2.0)
elif event[1] == sdl.K_w:
soya.toggle_wireframe()
elif event[1] == sdl.K_ESCAPE: soya.IDLER.stop()
if event[0] == sdl.KEYUP:
if event[1] == sdl.K_UP:
for joint in self.wheel_joints:
joint.velocity2 = 0.0
elif event[1] == sdl.K_DOWN:
for joint in self.wheel_joints:
joint.velocity2 = 0.0
elif event[1] in (sdl.K_LEFT, sdl.K_RIGHT):
self.turn_angle = 0.0
for i in (0, 1):
# Steer the wheels to the desired position
# we should do ackerman steering here
joint = self.wheel_joints[i]
v = (self.turn_angle - joint.angle1) * 10.0
joint.velocity = v
print "making car"
car = Car(scene)
print "setting car's position"
car.set_xyz(32.0, 30.0, 20.0)
print "done"
camera = soya.TravelingCamera(scene)
traveling = soya.ThirdPersonTraveling(car)
#traveling = soya.ThirdPersonTraveling(soya.Point(car, 0.0, 1.0, 0.0))
traveling.distance = 15.0
#traveling.smooth_move = 1
traveling.smooth_rotation = 0
#traveling.direction = soya.Vector(camera, 1.0, 2.0, 0.0)
#traveling.incline_as = None
camera.add_traveling(traveling)
camera.speed = 0.3
camera.set_xyz(16.0, 15.0, 0.0)
camera.look_at(car)
#camera = MovableCamera(scene)
#camera.set_xyz(16.0, 6.0, 0.0)
#camera.look_at(soya.Point(scene, 16.0, 6.0, 10.0))
soya.set_root_widget(camera)
contactgroup = ode.JointGroup()
def near_callback(g1, g2):
"""Called for each potentially intersecting geom. Not called (right now)
for spaces because they're handled automatically."""
#print g1, g2
contacts = ode.collide(g1, g2, 20)
for contact in contacts:
#print contact
# Set surface parameters here
#contact.setMu(5.0)
joint = ode.ContactJoint(scene, contactgroup, contact)
joint.attach(g1.body, g2.body)
class BuggyIdler(soya.Idler):
"""Idle with collision testing"""
def begin_round(self):
# Eliminate all contact joints
contactgroup.empty()
# First, do collisions
space.collide(near_callback)
# Do everything else
soya.Idler.begin_round(self)
print "idling"
BuggyIdler(scene).idle()
|