1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
|
# -*- indent-tabs-mode: t -*-
# Soya 3D
# Copyright (C) 2003-2004 Jean-Baptiste LAMY -- jiba@tuxfamily.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
cdef class _Model(_CObj):
#cdef public _filename
def __repr__(self):
return "<%s %s>" % (self.__class__.__name__, self._filename)
cdef void _batch (self, _Body body): pass
cdef void _render (self, _Body body): pass
cdef int _shadow (self, CoordSyst coord_syst, _Light light): return 0
cdef void _get_box (self, float* box, float* matrix): pass
cdef void _raypick (self, RaypickData raypick_data, CoordSyst raypickable): pass
cdef int _raypick_b (self, RaypickData raypick_data, CoordSyst raypickable): return 0
cdef void _collect_raypickables(self, Chunk* items, float* rsphere, float* sphere, CoordSyst parent): pass
cdef void _attach(self, mesh_names): raise TypeError("This type of model doesn't support attach!")
cdef void _detach(self, mesh_names): raise TypeError("This type of model doesn't support detach!")
cdef int _is_attached(self, mesh_name): return 0
cdef void _attach_to_bone(self, CoordSyst coordsyst, bone_name): raise TypeError("This type of model doesn't support attach_to_bone!")
cdef void _detach_from_bone(self, CoordSyst coordsyst): raise TypeError("This type of model doesn't support detach_from_bone!")
cdef _get_attached_meshes (self): return []
cdef _get_attached_coordsysts(self): return []
cdef void _animate_blend_cycle (self, animation_name, float weight, float fade_in): raise TypeError("This type of model doesn't support animation!")
cdef void _animate_clear_cycle (self, animation_name, float fade_out): raise TypeError("This type of model doesn't support animation!")
cdef void _animate_execute_action(self, animation_name, float fade_in, float fade_out): raise TypeError("This type of model doesn't support animation!")
cdef void _animate_reset(self): pass
cdef void _set_lod_level(self, float lod_level): raise TypeError("This type of model doesn't support LOD!")
cdef void _begin_round (self): pass
cdef void _advance_time (self, float proportion): pass
cdef void _instanced(self, _Body body, opt):
body._data = self
cdef _Model _create_deformed_data(self): return None
#cdef void _apply_deform(self, _Deform deform): pass
def __deepcopy__(self, memo):
"""Models are immutable."""
return self
#ctypedef struct DisplayList:
# int option
# int id
# int material_id #Material* material
# int* faces_id
# Chunk* chunk # Only used for initialization of the DisplayList
#
#ctypedef struct DisplayLists:
# int nb_opaque_list
# int nb_alpha_list
# DisplayList* display_lists
#
#ctypedef struct ModelFace:
# int option
# Pack* pack
# int normal
# int v[4] # v[3] is optional (only for quad, unused for triangle)
cdef int face_vertices_number(ModelFace* self):
if self.option & FACE_TRIANGLE: return 3
elif self.option & FACE_QUAD: return 4
return 0
cdef class _SimpleModel(_Model):
#cdef int _option
#cdef _materials
#cdef int _nb_faces, _nb_vertices, _nb_coords, _nb_vnormals, _nb_colors, _nb_values
#cdef float* _coords, *_vnormals, *_colors, *_values
#cdef int* _vertex_coords, *_vertex_texcoords, *_vertex_diffuses, *_vertex_emissives
#cdef char* _vertex_options
#cdef ModelFace* _faces
#cdef int* _neighbors, *_simple_neighbors
#cdef signed char* _neighbors_side, *_simple_neighbors_side
#cdef DisplayLists* _display_lists
#cdef float* _sphere
cdef _Model _create_deformed_data(self):
cdef _SimpleModel data
data = self.__class__.__new__(self.__class__)
data.base_model = self # Needed, to keep in memory the base model
data._materials = self._materials
data._option = self._option
data._nb_vertices = self._nb_vertices
data._nb_coords = self._nb_coords
data._nb_vnormals = self._nb_vnormals
data._nb_colors = self._nb_colors
data._nb_values = self._nb_values
data._nb_faces = self._nb_faces
data._faces = self._faces
data._coords = <float*> malloc(3 * data._nb_coords * sizeof(float))
data._vnormals = self._vnormals
data._colors = self._colors
data._values = self._values
data._vertex_coords = self._vertex_coords
if self._option & MODEL_VERTEX_OPTIONS: data._vertex_options = self._vertex_options
if self._option & MODEL_TEXCOORDS: data._vertex_texcoords = self._vertex_texcoords
if self._option & MODEL_DIFFUSES: data._vertex_diffuses = self._vertex_diffuses
if self._option & MODEL_EMISSIVES: data._vertex_emissives = self._vertex_emissives
if self._option & MODEL_HAS_SPHERE: data._sphere = self._sphere
if self._option & MODEL_NEIGHBORS:
data._neighbors = self._neighbors
data._neighbors_side = self._neighbors_side
if self._option & MODEL_SIMPLE_NEIGHBORS:
data._simple_neighbors = self._simple_neighbors
data._simple_neighbors_side = self._simple_neighbors_side
data._build_display_list()
data._option = data._option & ~MODEL_DISPLAY_LISTS # Deformed models change => don't render them with display lists
data._option = data._option & ~MODEL_INITED
data._option = data._option | MODEL_SHARED_DATA
return data
cdef void _get_box(self, float* box, float* matrix):
cdef float* coord
cdef float coord2[3]
coord = self._coords
for i from 0 <= i < self._nb_coords:
point_by_matrix_copy(coord2, coord, matrix)
if coord2[0] < box[0]: box[0] = coord2[0]
if coord2[1] < box[1]: box[1] = coord2[1]
if coord2[2] < box[2]: box[2] = coord2[2]
if coord2[0] > box[3]: box[3] = coord2[0]
if coord2[1] > box[4]: box[4] = coord2[1]
if coord2[2] > box[5]: box[5] = coord2[2]
coord = coord + 3
cdef __getcstate__(self):
cdef Chunk* chunk
cdef int i
cdef ModelFace* face
cdef material_id2index
material_id2index = {}
for i from 0 <= i < len(self._materials): material_id2index[id(self._materials[i])] = i
chunk = get_chunk()
chunk_add_int_endian_safe (chunk, self._option)
chunk_add_int_endian_safe (chunk, self._nb_vertices)
chunk_add_int_endian_safe (chunk, self._nb_coords)
chunk_add_int_endian_safe (chunk, self._nb_vnormals)
chunk_add_int_endian_safe (chunk, self._nb_colors)
chunk_add_int_endian_safe (chunk, self._nb_values)
chunk_add_int_endian_safe (chunk, self._nb_faces)
chunk_add_floats_endian_safe(chunk, self._coords , 3 * self._nb_coords)
chunk_add_floats_endian_safe(chunk, self._vnormals , 3 * self._nb_vnormals)
chunk_add_floats_endian_safe(chunk, self._colors , 4 * self._nb_colors)
chunk_add_floats_endian_safe(chunk, self._values , self._nb_values)
chunk_add_ints_endian_safe(chunk, self._vertex_coords, self._nb_vertices)
if self._option & MODEL_VERTEX_OPTIONS:
chunk_add_chars_endian_safe (chunk, self._vertex_options , self._nb_vertices)
if self._option & MODEL_TEXCOORDS:
chunk_add_ints_endian_safe (chunk, self._vertex_texcoords, self._nb_vertices)
if self._option & MODEL_DIFFUSES: chunk_add_ints_endian_safe (chunk, self._vertex_diffuses , self._nb_vertices)
if self._option & MODEL_EMISSIVES: chunk_add_ints_endian_safe (chunk, self._vertex_emissives, self._nb_vertices)
if self._option & MODEL_HAS_SPHERE: chunk_add_floats_endian_safe(chunk, self._sphere , 4)
for i from 0 <= i < self._nb_faces:
face = self._faces + i
chunk_add_int_endian_safe (chunk, face.option)
chunk_add_int_endian_safe (chunk, material_id2index[face.pack.material_id])
chunk_add_int_endian_safe (chunk, face.normal)
chunk_add_ints_endian_safe(chunk, face.v, 4)
if self._option & MODEL_NEIGHBORS:
chunk_add_ints_endian_safe (chunk, self._neighbors , self._nb_faces * 4)
chunk_add_chars_endian_safe(chunk, self._neighbors_side, self._nb_faces * 4)
if self._option & MODEL_SIMPLE_NEIGHBORS:
chunk_add_ints_endian_safe (chunk, self._simple_neighbors , self._nb_faces * 4)
chunk_add_chars_endian_safe(chunk, self._simple_neighbors_side, self._nb_faces * 4)
return drop_chunk_to_string(chunk), self._filename, self._materials
cdef void __setcstate_data__(self, cstate):
cdef int i
cdef int temp
cdef Chunk* chunk
cdef ModelFace* face
cstate2, self._filename, self._materials = cstate
chunk = string_to_chunk(cstate2)
chunk_get_int_endian_safe(chunk, &self._option)
chunk_get_int_endian_safe(chunk, &self._nb_vertices)
chunk_get_int_endian_safe(chunk, &self._nb_coords)
chunk_get_int_endian_safe(chunk, &self._nb_vnormals)
chunk_get_int_endian_safe(chunk, &self._nb_colors)
chunk_get_int_endian_safe(chunk, &self._nb_values)
chunk_get_int_endian_safe(chunk, &self._nb_faces)
self._faces = <ModelFace*> malloc( self._nb_faces * sizeof(ModelFace))
self._coords = <float*> malloc(3 * self._nb_coords * sizeof(float))
self._vnormals = <float*> malloc(3 * self._nb_vnormals * sizeof(float))
self._colors = <float*> malloc(4 * self._nb_colors * sizeof(float))
self._values = <float*> malloc( self._nb_values * sizeof(float))
chunk_get_floats_endian_safe(chunk, self._coords , 3 * self._nb_coords)
chunk_get_floats_endian_safe(chunk, self._vnormals , 3 * self._nb_vnormals)
chunk_get_floats_endian_safe(chunk, self._colors , 4 * self._nb_colors)
chunk_get_floats_endian_safe(chunk, self._values , self._nb_values)
self._vertex_coords = <int*> malloc(self._nb_vertices * sizeof(int))
chunk_get_ints_endian_safe(chunk, self._vertex_coords, self._nb_vertices)
if self._option & MODEL_VERTEX_OPTIONS: self._vertex_options = <char* > malloc(self._nb_vertices * sizeof(char )); chunk_get_chars_endian_safe (chunk, self._vertex_options , self._nb_vertices)
if self._option & MODEL_TEXCOORDS: self._vertex_texcoords = <int* > malloc(self._nb_vertices * sizeof(int )); chunk_get_ints_endian_safe (chunk, self._vertex_texcoords, self._nb_vertices)
if self._option & MODEL_DIFFUSES: self._vertex_diffuses = <int* > malloc(self._nb_vertices * sizeof(int )); chunk_get_ints_endian_safe (chunk, self._vertex_diffuses , self._nb_vertices)
if self._option & MODEL_EMISSIVES: self._vertex_emissives = <int* > malloc(self._nb_vertices * sizeof(int )); chunk_get_ints_endian_safe (chunk, self._vertex_emissives, self._nb_vertices)
if self._option & MODEL_HAS_SPHERE: self._sphere = <float*> malloc(4 * sizeof(float)); chunk_get_floats_endian_safe(chunk, self._sphere , 4)
for i from 0 <= i < self._nb_faces:
face = self._faces + i
chunk_get_int_endian_safe (chunk, &face.option)
chunk_get_int_endian_safe (chunk, &temp)
face.pack = (<_Material> (self._materials[temp]))._pack(face.option)
chunk_get_int_endian_safe (chunk, &face.normal)
chunk_get_int_endian_safe(chunk, &face.v[0])
chunk_get_int_endian_safe(chunk, &face.v[1])
chunk_get_int_endian_safe(chunk, &face.v[2])
chunk_get_int_endian_safe(chunk, &face.v[3])
if self._option & MODEL_NEIGHBORS:
self._neighbors = <int *> malloc(self._nb_faces * 4 * sizeof(int ))
self._neighbors_side = <signed char*> malloc(self._nb_faces * 4 * sizeof(signed char))
chunk_get_ints_endian_safe (chunk, self._neighbors , self._nb_faces * 4)
chunk_get_chars_endian_safe(chunk, self._neighbors_side, self._nb_faces * 4)
if self._option & MODEL_SIMPLE_NEIGHBORS:
self._simple_neighbors = <int *> malloc(self._nb_faces * 4 * sizeof(int ))
self._simple_neighbors_side = <signed char*> malloc(self._nb_faces * 4 * sizeof(signed char))
chunk_get_ints_endian_safe (chunk, self._simple_neighbors , self._nb_faces * 4)
chunk_get_chars_endian_safe(chunk, self._simple_neighbors_side, self._nb_faces * 4)
drop_chunk(chunk)
self._option = self._option & ~MODEL_INITED
cdef void __setcstate__(self, cstate):
self.__setcstate_data__(cstate)
self._build_display_list()
property option:
def __get__(self):
return self._option
property materials:
def __get__(self):
return self._materials
property nb_coords:
def __get__(self):
return self._nb_coords
property nb_vertices:
def __get__(self):
return self._nb_vertices
property nb_faces:
def __get__(self):
return self._nb_faces
def get_face(self, int index):
"""Debugging functions"""
cdef ModelFace* face
face = self._faces + index
if face.option & FACE_QUAD: return face.v[0], face.v[1], face.v[2], face.v[3]
else: return face.v[0], face.v[1], face.v[2]
def get_vertex_index(self, int index):
"""Debugging functions"""
l = [self._vertex_coords[index]]
if self._option & MODEL_VERTEX_OPTIONS: l.append(self._vertex_options[index])
else: l.append(-1)
if self._option & MODEL_TEXCOORDS: l.append(self._vertex_texcoords[index])
else: l.append(-1)
if self._option & MODEL_DIFFUSES: l.append(self._vertex_diffuses[index])
else: l.append(-1)
if self._option & MODEL_EMISSIVES: l.append(self._vertex_emissives[index])
else: l.append(-1)
return tuple(l)
def get_vertex(self, int index):
"""Debugging functions"""
l = [(self._coords[self._vertex_coords[index]], self._coords[self._vertex_coords[index] + 1], self._coords[self._vertex_coords[index] + 2])]
if self._option & MODEL_VERTEX_OPTIONS: l.append(self._vertex_options[index])
else: l.append(-1)
if self._option & MODEL_TEXCOORDS: l.append((self._values[self._vertex_texcoords[index]], self._values[self._vertex_texcoords[index] + 1]))
else: l.append(-1)
if self._option & MODEL_DIFFUSES: l.append((self._colors[self._vertex_diffuses [index]], self._colors[self._vertex_diffuses [index] + 1], self._colors[self._vertex_diffuses [index] + 2], self._colors[self._vertex_diffuses [index] + 3]))
else: l.append(-1)
if self._option & MODEL_EMISSIVES: l.append((self._colors[self._vertex_emissives[index]], self._colors[self._vertex_emissives[index] + 1], self._colors[self._vertex_emissives[index] + 2], self._colors[self._vertex_emissives[index] + 3]))
else: l.append(-1)
return tuple(l)
def get_neighbor(self, int index):
if not (self._option & MODEL_NEIGHBORS): return None
cdef int* neighbor
neighbor = self._neighbors + (4 * index)
return neighbor[0], neighbor[1], neighbor[2], neighbor[3]
def get_neighbor_side(self, int index):
if not (self._option & MODEL_NEIGHBORS): return None
cdef signed char* neighbor_side
neighbor_side = self._neighbors_side + (4 * index)
return neighbor_side[0], neighbor_side[1], neighbor_side[2], neighbor_side[3]
def get_simple_neighbor(self, int index):
if not (self._option & MODEL_SIMPLE_NEIGHBORS): return None
cdef int* neighbor
neighbor = self._simple_neighbors + (4 * index)
return neighbor[0], neighbor[1], neighbor[2], neighbor[3]
def get_simple_neighbor_side(self, int index):
if not (self._option & MODEL_SIMPLE_NEIGHBORS): return None
cdef signed char* neighbor_side
neighbor_side = self._simple_neighbors_side + (4 * index)
return neighbor_side[0], neighbor_side[1], neighbor_side[2], neighbor_side[3]
property sphere:
def __get__(self):
return (self._sphere[0], self._sphere[1], self._sphere[2], self._sphere[3])
cdef void _register_material(self, _Material material):
if material in self._materials: return
self._materials.append(material)
cdef void _add_coord(self, _Vertex vertex):
vertex._out(self._coords + 3 * self._nb_coords)
self._nb_coords = self._nb_coords + 1
if not vertex._normal is None:
vertex._normal._out(self._vnormals + 3 * self._nb_vnormals)
vector_normalize(self._vnormals + 3 * self._nb_vnormals)
self._nb_vnormals = self._nb_vnormals + 1
cdef int _register_value(self, float* value, int nb):
cdef int r, i
for r from 0 <= r <= self._nb_values - nb:
if float_array_compare(value, self._values + r, nb) == 1: return r
r = self._nb_values
self._nb_values = self._nb_values + nb
self._values = <float*> realloc(self._values, self._nb_values * sizeof(float))
memcpy(self._values + r, value, nb * sizeof(float))
return r
cdef int _register_color(self, float color[4]):
cdef float* ptr
cdef int i
ptr = self._colors
for i from 0 <= i < self._nb_colors:
if ((fabs(color[0] - ptr[0]) < EPSILON) and
(fabs(color[1] - ptr[1]) < EPSILON) and
(fabs(color[2] - ptr[2]) < EPSILON) and
(fabs(color[3] - ptr[3]) < EPSILON)): return 4 * i
ptr = ptr + 4
i = self._nb_colors * 4
self._nb_colors = self._nb_colors + 1
self._colors = <float*> realloc(self._colors, self._nb_colors * 4 * sizeof(float))
memcpy(self._colors + i, color, 4 * sizeof(float))
return i
cdef void _add_face(self, _Face face, vertex2ivertex, ivertex2index, lights, int static_shadow):
cdef ModelFace* sf
cdef int nb_vertices
cdef float n[4]
cdef float* p
sf = self._faces + self._nb_faces
sf.option = 0
n[0] = n[1] = n[2] = n[3] = 0.0
nb_vertices = len(face._vertices)
if nb_vertices == 3: sf.option = sf.option | FACE_TRIANGLE
elif nb_vertices == 4: sf.option = sf.option | FACE_QUAD
else: raise ValueError("Face with %s vertices are not supported in model." % nb_vertices)
if face.is_alpha(): sf.option = sf.option | FACE_ALPHA
if face._option & FACE2_DOUBLE_SIDED: sf.option = sf.option | FACE_DOUBLE_SIDED
if face._option & FACE2_SMOOTH_LIT: sf.option = sf.option | FACE_SMOOTH_LIT
if not(face._option & FACE2_LIT): sf.option = sf.option | FACE_NON_LIT
if face._option & NON_SOLID: sf.option = sf.option | FACE_NON_SOLID
# compute data and then register all in 1 pass because registering data
# can have side effect on the faces chunk
sf.v[0] = self._add_vertex(face._vertices[0], vertex2ivertex, ivertex2index, lights, static_shadow)
sf.v[1] = self._add_vertex(face._vertices[1], vertex2ivertex, ivertex2index, lights, static_shadow)
sf.v[2] = self._add_vertex(face._vertices[2], vertex2ivertex, ivertex2index, lights, static_shadow)
if nb_vertices == 4: sf.v[3] = self._add_vertex(face._vertices[3], vertex2ivertex, ivertex2index, lights, static_shadow)
face._normal._out(n)
if self._option & MODEL_PLANE_EQUATION:
p = self._coords + self._vertex_coords[sf.v[0]]
n[3] = -(p[0] * n[0] + p[1] * n[1] + p[2] * n[2])
plane_vector_normalize(n)
sf.normal = self._register_value(n, 4)
else:
vector_normalize(n)
sf.normal = self._register_value(n, 3)
if not face._material in self._materials: self._materials.append(face._material)
sf.pack = face._material._pack(sf.option)
self._nb_faces = self._nb_faces + 1
cdef int _add_vertex(self, _Vertex vertex, vertex2ivertex, ivertex2index, lights, int static_shadow):
cdef float value[4], p[3], v[3]
cdef int coord, texcoord, diffuse, emissive
cdef _Light light
cdef _Vertex ivertex
ivertex = vertex2ivertex[vertex]
coord = 3 * ivertex2index[vertex2ivertex[vertex]]
if self._option & MODEL_TEXCOORDS:
value[0] = vertex._tex_x
value[1] = vertex._tex_y
texcoord = self._register_value(value, 2)
else: texcoord = -1
if self._option & MODEL_DIFFUSES:
if not vertex._diffuse is None:
value[0] = vertex._diffuse[0]
value[1] = vertex._diffuse[1]
value[2] = vertex._diffuse[2]
value[3] = vertex._diffuse[3]
else: # the face use diffuse color, but not for this vertex. but we need ALL the face's vertices to have a color => we take the material diffuse color as default.
memcpy(value, vertex._face._material._diffuse, 4 * sizeof(float))
diffuse = self._register_color(value)
else: diffuse = -1
if self._option & MODEL_EMISSIVES:
if not vertex._emissive is None:
value[0] = vertex._emissive[0]
value[1] = vertex._emissive[1]
value[2] = vertex._emissive[2]
value[3] = vertex._emissive[3]
else: # the face use emissive color, but not for this vertex. the default emissive is BLACK, i.e. no emission.
value[0] = value[1] = value[2] = 0.0
value[3] = 1.0
elif lights:
value[0] = value[1] = value[2] = 0.0
value[3] = 1.0
if lights: # Apply static lighting
for light in lights:
vertex._into(light, p)
if vertex._face._option & FACE2_SMOOTH_LIT: ivertex ._normal._into(light, v)
else: vertex._face._normal._into(light, v)
light._static_light_at(p, v, static_shadow, value)
if self._option & MODEL_EMISSIVES: emissive = self._register_color(value)
else: emissive = -1
cdef int i
for i from 0 <= i < self._nb_vertices:
if ((self._vertex_coords [i] == coord ) and
((texcoord == -1) or (self._vertex_texcoords[i] == texcoord)) and
((diffuse == -1) or (self._vertex_diffuses [i] == diffuse )) and
((emissive == -1) or (self._vertex_emissives[i] == emissive))): return i
i = self._nb_vertices
self._nb_vertices = self._nb_vertices + 1
self._vertex_coords = <int*> realloc(self._vertex_coords, self._nb_vertices * sizeof(int))
self._vertex_coords[i] = coord
if self._option & MODEL_TEXCOORDS: self._vertex_texcoords = <int*> realloc(self._vertex_texcoords, self._nb_vertices * sizeof(int)); self._vertex_texcoords[i] = texcoord
if self._option & MODEL_DIFFUSES : self._vertex_diffuses = <int*> realloc(self._vertex_diffuses , self._nb_vertices * sizeof(int)); self._vertex_diffuses [i] = diffuse
if self._option & MODEL_EMISSIVES: self._vertex_emissives = <int*> realloc(self._vertex_emissives, self._nb_vertices * sizeof(int)); self._vertex_emissives[i] = emissive
return i
# if texcoord != -1:
# self._vertex_texcoords = <int*> realloc(self._vertex_texcoords, self._nb_vertices * sizeof(int))
# self._vertex_texcoords[i] = texcoord
# if diffuse != -1:
# self._vertex_diffuses = <int*> realloc(self._vertex_diffuses , self._nb_vertices * sizeof(int))
# self._vertex_diffuses[i] = diffuse
# if emissive != -1:
# self._vertex_emissives = <int*> realloc(self._vertex_emissives, self._nb_vertices * sizeof(int))
# self._vertex_emissives[i] = emissive
# return i
cdef object _identify_vertices(self, faces, float angle):
"""Finds which vertices are at the same position, for vertex sharing capabilities.
2 vertices are considered at the same position if the distance between them is > EPSILON,
and if the angle between their 2 faces is < ANGLE."""
# "ivertex" means "identified vertex"
cdef _Face face
cdef _Vertex vertex, ivertex, vertex2
cdef int i, j
cdef float p[3], amin, a
cdef ivertices
vertex2ivertex = {}
ivertex2vertices = {}
hashcube = {}
for face in faces:
for vertex in face._vertices:
vertex._out(p)
p[0] = (<float> (<int> (p[0] / EPSILON))) * EPSILON
p[1] = (<float> (<int> (p[1] / EPSILON))) * EPSILON
p[2] = (<float> (<int> (p[2] / EPSILON))) * EPSILON
hash = (p[0], p[1], p[2])
ivertex = hashcube.get(hash)
if ivertex is None:
vertex2ivertex[vertex] = hashcube[hash] = ivertex = vertex
ivertex2vertices[ivertex] = [vertex]
else:
vertex2ivertex[vertex] = ivertex
ivertex2vertices[ivertex].append(vertex)
if angle > 180.0: return vertex2ivertex, ivertex2vertices
# Take face angle into account for vertex identification.
# vertex2ivertex2 = {}
# ivertex2vertices2 = {}
# for ivertex, vertices in ivertex2vertices.items():
# vertex2ivertex2[ivertex] = ivertex # ivertex is vertices[0]
# ivertex2vertices2[ivertex] = [ivertex]
# ivertices = [ivertex]
# for vertex in vertices[1:]:
# potential_ivertex = []
# for ivertex in ivertices:
# #amin = 360.0
# #for vertex2 in ivertex2vertices2[ivertex]:
# # a = vertex._face._normal.angle_to(vertex2._face._normal)
# # if a < amin: amin = a
# #potential_ivertex.append((a, ivertex))
# potential_ivertex.append((vertex._face._normal.angle_to(ivertex._face._normal), ivertex))
# potential_ivertex.sort()
# if potential_ivertex and (potential_ivertex[0][0] < angle):
# ivertex = potential_ivertex[0][1]
# vertex2ivertex2[vertex] = ivertex
# ivertex2vertices2[ivertex].append(vertex)
# else: # Cannot identify with any existant ivertex => vertex is a new ivertex
# vertex2ivertex2[vertex] = vertex
# ivertex2vertices2[vertex] = [vertex]
# #ivertices.append(vertex) # Crash -- Pyrex bug ?
# ivertices = ivertices + [ivertex]
# vertex2ivertex2 = {}
# ivertex2vertices2 = {}
# for ivertex, vertices in ivertex2vertices.items():
# vertex2ivertex2[ivertex] = ivertex # ivertex is vertices[0]
# ivertex2vertices2[ivertex] = [ivertex]
# ivertices = [ivertex]
# for vertex in vertices[1:]:
# for ivertex in ivertices:
# if vertex._face._normal.angle_to(ivertex._face._normal) < angle:
# vertex2ivertex2[vertex] = ivertex
# ivertex2vertices2[ivertex].append(vertex)
# break
# else: # Cannot identify with any existant ivertex => vertex is a new ivertex
# vertex2ivertex2[vertex] = vertex
# ivertex2vertices2[vertex] = [vertex]
# ivertices = ivertices + [vertex]
vertex2ivertex2 = {}
ivertex2vertices2 = {}
from sets import Set
for vertices in ivertex2vertices.values():
couples = []
for i from 0 <= i < len(vertices):
for j from i + 1 <= j < len(vertices):
couples.append((vertices[i].face.normal.angle_to(vertices[j].face.normal), vertices[i], vertices[j]))
couples.sort()
shared_vertices = {}
for vertex in vertices: shared_vertices[vertex] = Set([vertex])
for a, vertex1, vertex2 in couples:
if a > angle: break
shared_vertex1 = shared_vertices.get(vertex1)
shared_vertex2 = shared_vertices.get(vertex2)
shared_vertex = shared_vertex1 | shared_vertex2
for vertex in shared_vertex: shared_vertices[vertex] = shared_vertex
for shared_vertex in Set(shared_vertices.values()):
shared_vertex = list(shared_vertex)
ivertex = shared_vertex[0]
ivertex2vertices2[ivertex] = shared_vertex
for vertex in shared_vertex:
vertex2ivertex2[vertex] = ivertex
return vertex2ivertex2, ivertex2vertices2
cdef void _compute_face_normals(self, faces):
cdef _Face face
for face in faces: face._compute_normal()
cdef void _compute_vertex_normals(self, faces, vertex2ivertex, ivertex2vertices):
cdef _Vertex vertex, ivertex
for ivertex in ivertex2vertices.keys():
for vertex in ivertex2vertices[ivertex]:
if vertex._face._option & FACE2_SMOOTH_LIT:
if ivertex._normal is None: ivertex._normal = Vector(vertex._face.get_root())
vertex._face._compute_normal()
ivertex._normal.add_mul_vector(vertex._angle_at(), vertex._face._normal)
#if not ivertex._normal is None: ivertex._normal.normalize()
cdef void _compute_face_neighbors(self, faces, vertex2ivertex, ivertex2vertices, int* neighbor, signed char* neighbor_side):
# 2 faces are neighbors <=> they share 2 vertices.
cdef int i, j, v1_neighbor_index, v2_neighbor_index
cdef _Vertex v1, v2, v1_neighbor, v2_neighbor
cdef _Face face
i = 0
face2index = {}
for face in faces:
face2index[face] = i
i = i + 1
for face in faces:
for i from 0 <= i < len(face.vertices):
neighbor[i] = -1 # default value meaning 'no neighbor'
v1 = vertex2ivertex[face.vertices[i]]
v2 = vertex2ivertex[((i + 1 < len(face.vertices)) and face.vertices[i + 1]) or face.vertices[0]]
for v1_neighbor in ivertex2vertices[v1]:
#if (not v1_neighbor._face is face) and (face.normal.angle_to(v1_neighbor._face.normal) < angle):
# A double sided face cannot be the neighbor of a non-double sided face
if (face._option & FACE2_DOUBLE_SIDED) != (v1_neighbor._face._option & FACE2_DOUBLE_SIDED): continue
if not v1_neighbor._face is face:
for v2_neighbor in v1_neighbor._face.vertices:
if vertex2ivertex[v2_neighbor] is v2:
# one neighbor found
neighbor[i] = face2index[v1_neighbor._face]
if face._option & FACE2_DOUBLE_SIDED: # Check for "backside-neighbor"
v1_neighbor_index = v1_neighbor._face.vertices.index(v1_neighbor)
v2_neighbor_index = v1_neighbor._face.vertices.index(v2_neighbor)
if (v1_neighbor_index == v2_neighbor_index - 1) or ((v1_neighbor_index > 1) and (v2_neighbor_index == 0)): # Same rotation sens
neighbor_side[i] = 1
else: neighbor_side[i] = -1
else: neighbor_side[i] = 1
break
else: continue
break
if len(face.vertices) < 4: neighbor[3] = -1 # triangle can have only 3 neighbors
neighbor = neighbor + 4
neighbor_side = neighbor_side + 4
def __init__(self, _World world, float angle, int option, lights):
cdef CoordSyst coordsyst
cdef object faces
cdef _Face face
cdef _Vertex vertex, ivertex
cdef Chunk* chunk
cdef int i
chunk = chunk_new() # Do NOT use get_chunk() since we will keep the content of the chunk and drop the structure !!!
self._materials = []
# Collect faces
# XXX collect models too (by loading the corresponding world)
faces = []
for coordsyst in world.recursive():
if isinstance(coordsyst, _Face) and not(coordsyst._option & HIDDEN): faces.append(coordsyst)
# check for additional options
self._option = self._option | option
if lights: self._option = self._option | (MODEL_STATIC_LIT + MODEL_EMISSIVES)
for face in faces:
for vertex in face._vertices:
if (not face._material._texture is None) and ((vertex._tex_x != 0.0) or (vertex._tex_y != 0.0)): self._option = self._option | MODEL_TEXCOORDS
if not vertex._diffuse is None: self._option = self._option | MODEL_DIFFUSES
if not vertex._emissive is None: self._option = self._option | MODEL_EMISSIVES
self._compute_face_normals(faces)
vertex2ivertex, ivertex2vertices = self._identify_vertices(faces, angle)
self._compute_vertex_normals(faces, vertex2ivertex, ivertex2vertices)
# creates vertex coords and normals -- process ivertex with normal first (memory optimization)
i = 0
ivertices = []
ivertex2index = {}
for ivertex in ivertex2vertices.keys():
if not ivertex._normal is None:
ivertices.append(ivertex)
ivertex2index[ivertex] = i
i = i + 1
self._vnormals = <float*> malloc(len(ivertices) * 3 * sizeof(float))
for ivertex in ivertex2vertices.keys():
if ivertex._normal is None:
ivertices.append(ivertex)
ivertex2index[ivertex] = i
i = i + 1
self._coords = <float*> malloc(len(ivertices) * 3 * sizeof(float))
for ivertex in ivertices: self._add_coord(ivertex)
# creates the faces
self._faces = <ModelFace*> malloc(len(faces) * sizeof(ModelFace))
for face in faces: self._add_face(face, vertex2ivertex, ivertex2index, lights, self._option & MODEL_STATIC_SHADOW)
# avoid SimpleModel.material.append(...)
self._materials = tuple(self._materials)
# find face neighbors
if self._option & MODEL_NEIGHBORS:
self._neighbors = <int *> malloc(self._nb_faces * 4 * sizeof(int ))
self._neighbors_side = <char*> malloc(self._nb_faces * 4 * sizeof(char))
self._compute_face_neighbors(faces, vertex2ivertex, ivertex2vertices, self._neighbors, self._neighbors_side)
# find face simple neighbors (doesn't take angle into account)
if self._option & MODEL_SIMPLE_NEIGHBORS:
# Re-identify vertices, because for simple neighbors we don't take angle into account
vertex2ivertex, ivertex2vertices = self._identify_vertices(faces, 360.0)
self._simple_neighbors = <int *> malloc(self._nb_faces * 4 * sizeof(int ))
self._simple_neighbors_side = <char*> malloc(self._nb_faces * 4 * sizeof(char))
self._compute_face_neighbors(faces, vertex2ivertex, ivertex2vertices, self._simple_neighbors, self._simple_neighbors_side)
# TO DO ?
#self._compute_dimension()
cdef void _build_sphere(self):
if self._nb_coords > 0:
self._sphere = <float*> malloc(4 * sizeof(float))
sphere_from_points(self._sphere, self._coords, self._nb_coords)
self._option = self._option | MODEL_HAS_SPHERE
cdef void _build_display_list(self):
cdef DisplayLists* display_lists
cdef DisplayList* display_list
cdef ModelFace* face
cdef int nb, i, j, k
cdef Chunk* chunk
display_lists = <DisplayLists*> malloc(sizeof(DisplayLists))
display_lists.nb_opaque_list = display_lists.nb_alpha_list = 0
nb = 0
display_lists.display_lists = NULL
for k from 0 <= k < 2:
for j from 0 <= j < self._nb_faces:
face = self._faces + j
if ((face.option & FACE_ALPHA) and (k == 1)) or ((not(face.option & FACE_ALPHA)) and (k == 0)):
for i from 0 <= i < nb:
display_list = display_lists.display_lists + i
if (display_list.material_id == face.pack.material_id) and (display_list.option == (face.option & DISPLAY_LIST_OPTIONS)):
chunk_add_int(display_list.chunk, j)
break
else:
display_lists.display_lists = <DisplayList*> realloc(display_lists.display_lists, (nb + 1) * sizeof(DisplayList))
display_list = display_lists.display_lists + nb
display_list.material_id = face.pack.material_id
display_list.option = face.option & DISPLAY_LIST_OPTIONS
display_list.chunk = chunk_new()
chunk_add_int(display_list.chunk, j)
if display_list.option & FACE_ALPHA: display_lists.nb_alpha_list = display_lists.nb_alpha_list + 1
else: display_lists.nb_opaque_list = display_lists.nb_opaque_list + 1
nb = nb + 1
for i from 0 <= i < nb:
display_list = display_lists.display_lists + i
chunk_add_int(display_list.chunk, -1) # -1 means end
display_list.faces_id = <int*> (display_list.chunk.content)
free(display_list.chunk)
# XXX sort display list by material ?
self._display_lists = display_lists
self._option = self._option | MODEL_DISPLAY_LISTS
cdef void _init_display_list(self):
cdef DisplayList* display_list
cdef ModelFace* face
cdef int i, nb, j
#model_option_activate(self._option) # XXX usefull ? not put in the display list, but may modify the data stored in it ???
nb = self._display_lists.nb_opaque_list + self._display_lists.nb_alpha_list
display_list = self._display_lists.display_lists
for i from 0 <= i < nb:
display_list = self._display_lists.display_lists + i
display_list.id = glGenLists(1)
(<_Material> (display_list.material_id))._activate()
face_option_activate(display_list.option)
glNewList(display_list.id, GL_COMPILE)
if display_list.option & FACE_TRIANGLE: glBegin(GL_TRIANGLES)
elif display_list.option & FACE_QUAD: glBegin(GL_QUADS)
else:
print "Model supports only triangle or quad faces !"
raise ValueError("Model supports only triangle or quad faces !")
for j from 0 <= j < self._nb_faces:
face = self._faces + j
if ((face.option & DISPLAY_LIST_OPTIONS) == display_list.option) and (face.pack.material_id == display_list.material_id):
if face.option & FACE_QUAD: self._render_quad (face)
else: self._render_triangle(face)
glEnd()
glEndList()
face_option_inactivate(display_list.option)
#model_option_inactivate(self._option)
self._option = self._option | MODEL_INITED
def __dealloc__(self):
cdef DisplayList* display_list
cdef int i, nb
if (self._option & MODEL_DISPLAY_LISTS) and (self._option & MODEL_INITED):
nb = self._display_lists.nb_opaque_list + self._display_lists.nb_alpha_list
display_list = self._display_lists.display_lists
for i from 0 <= i < nb:
display_list = self._display_lists.display_lists + i
glDeleteLists(display_list.id, 1)
free(self._coords)
if not self.option & MODEL_SHARED_DATA:
free(self._faces)
free(self._vnormals)
free(self._colors)
free(self._values)
free(self._vertex_coords)
if self._option & MODEL_VERTEX_OPTIONS: free(self._vertex_options)
if self._option & MODEL_TEXCOORDS: free(self._vertex_texcoords)
if self._option & MODEL_DIFFUSES: free(self._vertex_diffuses)
if self._option & MODEL_EMISSIVES: free(self._vertex_emissives)
if self._option & MODEL_HAS_SPHERE: free(self._sphere)
cdef void _batch(self, _Body body):
if body._option & HIDDEN: return
#cdef Frustum* frustum
#frustum = renderer._frustum(body)
#if (self._option & MODEL_HAS_SPHERE) and (sphere_in_frustum(frustum, self._sphere) == 0): return
cdef float sphere[4]
if self._option & MODEL_HAS_SPHERE:
sphere_by_matrix_copy(sphere, self._sphere, body._root_matrix())
if sphere_in_frustum(renderer.root_frustum, sphere) == 0: return
if self._display_lists.nb_opaque_list != 0: renderer._batch(renderer.opaque, self, body, -1)
if self._display_lists.nb_alpha_list != 0: renderer._batch(renderer.alpha , self, body, -1)
# Not used by _SimpleModel, but by subclasses (like _TreeModel or _CellShadingModel)
cdef void _batch_face(self, ModelFace* face):
# XXX inline this func
# XXX add a face option in order to know if the face has only invisible vertices
# XXX add a face option in order to know if the face has at least one alpha vertices
if self._option & MODEL_VERTEX_OPTIONS:
if ((self._vertex_options[face.v[0]] & VERTEX_INVISIBLE) and
(self._vertex_options[face.v[1]] & VERTEX_INVISIBLE) and
(self._vertex_options[face.v[2]] & VERTEX_INVISIBLE) and
((face.option & FACE_TRIANGLE) or (self._vertex_options[face.v[3]] & VERTEX_INVISIBLE))):
return
if ((self._vertex_options[face.v[0]] & P3_VERTEX_ALPHA) or
(self._vertex_options[face.v[1]] & P3_VERTEX_ALPHA) or
(self._vertex_options[face.v[2]] & P3_VERTEX_ALPHA) or
((face.option & FACE_QUAD) and (self._vertex_options[face.v[3]] & VERTEX_ALPHA))):
pack_batch_face(pack_get_alpha(face.pack), face)
return
pack_batch_face(face.pack, face)
cdef void _render(self, _Body body):
cdef DisplayList* display_list
cdef ModelFace* face
cdef int i, j, start, end
model_option_activate(self._option) # XXX put this in the display list ?
if body._option & LEFTHANDED: glFrontFace(GL_CW)
if self._option & MODEL_DISPLAY_LISTS:
if not(self._option & MODEL_INITED): self._init_display_list()
if renderer.state == RENDERER_STATE_OPAQUE:
start = 0
end = self._display_lists.nb_opaque_list
else:
start = self._display_lists.nb_opaque_list
end = start + self._display_lists.nb_alpha_list
for i from start <= i < end:
display_list = self._display_lists.display_lists + i
face_option_activate(display_list.option)
(<_Material> (display_list.material_id))._activate()
glCallList(display_list.id)
face_option_inactivate(display_list.option)
else:
if renderer.state == RENDERER_STATE_OPAQUE:
start = 0
end = self._display_lists.nb_opaque_list
else:
start = self._display_lists.nb_opaque_list
end = start + self._display_lists.nb_alpha_list
for i from start <= i < end:
display_list = self._display_lists.display_lists + i
face_option_activate(display_list.option)
(<_Material> (display_list.material_id))._activate()
if display_list.option & FACE_TRIANGLE: glBegin(GL_TRIANGLES)
elif display_list.option & FACE_QUAD: glBegin(GL_QUADS)
else:
print "Model supports only triangle or quad faces !"
raise ValueError("Model supports only triangle or quad faces !")
for j from 0 <= j < self._nb_faces:
face = self._faces + j
if ((face.option & DISPLAY_LIST_OPTIONS) == display_list.option) and (face.pack.material_id == display_list.material_id):
if face.option & FACE_QUAD: self._render_quad (face)
else: self._render_triangle(face)
glEnd()
face_option_inactivate(display_list.option)
if body._option & LEFTHANDED: glFrontFace(GL_CCW)
model_option_inactivate(self._option)
cdef void _raypick(self, RaypickData data, CoordSyst parent):
cdef float* raydata
cdef int i
raydata = parent._raypick_data(data)
if (self._option & MODEL_HAS_SPHERE) and (sphere_raypick(raydata, self._sphere) == 0): return
for i from 0 <= i < self._nb_faces:
self._face_raypick(self._faces + i, raydata, data, parent)
cdef int _raypick_b(self, RaypickData data, CoordSyst parent):
cdef float* raydata
cdef int i
raydata = parent._raypick_data(data)
if (self._option & MODEL_HAS_SPHERE) and (sphere_raypick(raydata, self._sphere) == 0): return 0
for i from 0 <= i < self._nb_faces:
if self._face_raypick_b(self._faces + i, raydata, data): return 1
return 0
cdef void _face_raypick(self, ModelFace* face, float* raydata, RaypickData data, CoordSyst parent):
# XXX inline this func ?
cdef float z, root_z
cdef int r
if face.option & FACE_NON_SOLID: return
if (face.option & FACE_DOUBLE_SIDED) and (data.option & RAYPICK_CULL_FACE): data.option = data.option - RAYPICK_CULL_FACE # XXX weird... where RAYPICK_CULL_FACE is added back ?
if face.option & FACE_QUAD:
r = quad_raypick (raydata, self._coords + self._vertex_coords[face.v[0]], self._coords + self._vertex_coords[face.v[1]], self._coords + self._vertex_coords[face.v[2]], self._coords + self._vertex_coords[face.v[3]], self._values + face.normal, data.option, &z)
else:
r = triangle_raypick(raydata, self._coords + self._vertex_coords[face.v[0]], self._coords + self._vertex_coords[face.v[1]], self._coords + self._vertex_coords[face.v[2]], self._values + face.normal, data.option, &z)
if r != 0:
root_z = parent._distance_out(z)
if (data.result_coordsyst is None) or (fabs(root_z) < fabs(data.root_result)):
data.result = z
data.root_result = root_z
data.result_coordsyst = parent
if r == RAYPICK_DIRECT: memcpy(data.normal, self._values + face.normal, 3 * sizeof(float))
elif r == RAYPICK_INDIRECT:
if face.option & FACE_DOUBLE_SIDED:
data.normal[0] = -(self._values + face.normal)[0]
data.normal[1] = -(self._values + face.normal)[1]
data.normal[2] = -(self._values + face.normal)[2]
else: memcpy(data.normal, self._values + face.normal, 3 * sizeof(float))
cdef int _face_raypick_b(self, ModelFace* face, float* raydata, RaypickData data):
# XXX inline this func ?
cdef float z
if face.option & FACE_NON_SOLID: return 0
if (face.option & FACE_DOUBLE_SIDED) and (data.option & RAYPICK_CULL_FACE): data.option = data.option - RAYPICK_CULL_FACE # XXX weird... where RAYPICK_CULL_FACE is added back ?
if face.option & FACE_QUAD:
if quad_raypick (raydata, self._coords + self._vertex_coords[face.v[0]], self._coords + self._vertex_coords[face.v[1]], self._coords + self._vertex_coords[face.v[2]], self._coords + self._vertex_coords[face.v[3]], self._values + face.normal, data.option, &z) != 0: return 1
else:
if triangle_raypick(raydata, self._coords + self._vertex_coords[face.v[0]], self._coords + self._vertex_coords[face.v[1]], self._coords + self._vertex_coords[face.v[2]], self._values + face.normal, data.option, &z) != 0: return 1
return 0
cdef void _collect_raypickables(self, Chunk* items, float* rsphere, float* sphere, CoordSyst parent):
if not(self._option & MODEL_HAS_SPHERE) or (sphere_distance_sphere(sphere, self._sphere) < 0.0):
chunk_add_ptr(items, <void*> parent)
cdef void _render_triangle(self, ModelFace* face):
if not(face.option & FACE_SMOOTH_LIT): glNormal3fv(self._values + face.normal) # face normal
self._render_vertex(face.v[0], face.option) # render each vertex
self._render_vertex(face.v[1], face.option)
self._render_vertex(face.v[2], face.option)
cdef void _render_quad(self, ModelFace* face):
if not(face.option & FACE_SMOOTH_LIT): glNormal3fv(self._values + face.normal) # face normal
self._render_vertex(face.v[0], face.option) # render each vertex
self._render_vertex(face.v[1], face.option)
self._render_vertex(face.v[2], face.option)
self._render_vertex(face.v[3], face.option)
cdef void _render_vertex(self, int index, int face_option):
if self._option & MODEL_DIFFUSES : glColor4fv (self._colors + self._vertex_diffuses [index])
if self._option & MODEL_EMISSIVES: glMaterialfv (GL_FRONT_AND_BACK, GL_EMISSION, self._colors + self._vertex_emissives[index]) # XXX use glColorMaterial when emissive color but no diffuse ?
if self._option & MODEL_TEXCOORDS: glTexCoord2fv(self._values + self._vertex_texcoords[index])
if face_option & FACE_SMOOTH_LIT : glNormal3fv (self._vnormals + self._vertex_coords [index])
glVertex3fv(self._coords + self._vertex_coords[index])
cdef int _shadow(self, CoordSyst coord_syst, _Light light):
if not(self._option & MODEL_SHADOW): return 0
cdef int displaylist
cdef Frustum* frustum
cdef float coord[4]
cdef float cone[9]
cdef float b
b = renderer.current_camera._back
light._cast_into(coord_syst)
if light._w == 0.0: # Directional light
cone_from_sphere_and_vector(cone, self._sphere, light._data, b)
else:
if cone_from_sphere_and_origin(cone, self._sphere, light._data, b) == 0: return 0
frustum = renderer._frustum(coord_syst)
coord[0] = 0.5 * (frustum.points[0] + frustum.points[6])
coord[1] = 0.5 * (frustum.points[1] + frustum.points[7])
coord[2] = 0.5 * (frustum.points[2] + frustum.points[8])
coord[3] = point_distance_to(coord, frustum.points)
if (coord_syst._option & COORDSYS_STATIC) and (light._option & COORDSYS_STATIC):
if sphere_is_in_cone(coord, cone): # The camera is inside the shadow, special case
return self._build_shadow(coord_syst, light, 1, SHADOW_DISPLAY_LIST)
else:
displaylist = light._static_shadow_displaylists.get(coord_syst, -1)
if displaylist == -1:
displaylist = light._static_shadow_displaylists[coord_syst] = glGenLists(1)
#glNewList(displaylist, GL_COMPILE_AND_EXECUTE)
self._build_shadow(coord_syst, light, 0, displaylist)
#glEndList()
else:
glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFF)
glFrontFace (GL_CW)
glStencilOp (GL_KEEP, GL_KEEP, GL_INCR)
glLoadMatrixf(coord_syst._render_matrix)
glCallList (displaylist)
glFrontFace (GL_CCW)
glStencilOp (GL_KEEP, GL_KEEP, GL_DECR)
glCallList (displaylist)
return 1
else:
displaylist = light._static_shadow_displaylists.get(coord_syst, -1)
if displaylist != -1:
del light._static_shadow_displaylists[coord_syst]
return self._build_shadow(coord_syst, light, sphere_is_in_cone(coord, cone), SHADOW_DISPLAY_LIST)
cdef int _build_shadow(self, CoordSyst coord_syst, _Light light, int camera_inside_shadow, int displaylist):
if not(self._option & MODEL_SHADOW): return 0
#cdef Frustum* frustum
cdef ModelFace* face, *neighbor_face
cdef float* coord_ptr, *normal
cdef double* coord_ptrd
cdef float coord[4]
#cdef float cone[9]
cdef float b
cdef int nbv, i, j, k, p1, p2, nb_inter, nb_segment
cdef int* neighbors
cdef signed char* neighbors_side
cdef Chunk* chunk, *chunk2
cdef float fp1[3], fp2[3], inter1[3], inter2[3], face_data[15]
cdef float plane[4]
cdef float v1[3], v2[3]
cdef int nb_points[3]
b = renderer.current_camera._back
# Tag all faces front or back, for the given light
#light._cast_into(coord_syst)
if light._w == 0.0: # Directional light
#cone_from_sphere_and_vector(cone, self._sphere, light._data, b)
for i from 0 <= i < self._nb_faces:
face = self._faces + i
if self._option & MODEL_VERTEX_OPTIONS:
if ((self._vertex_options[face.v[0]] & VERTEX_INVISIBLE) and
(self._vertex_options[face.v[1]] & VERTEX_INVISIBLE) and
(self._vertex_options[face.v[2]] & VERTEX_INVISIBLE) and
((face.option & FACE_TRIANGLE) or (self._vertex_options[face.v[3]] & VERTEX_INVISIBLE))):
continue
if vector_dot_product(light._data, self._values + face.normal) >= 0.0:
face.option = (face.option & ~FACE_LIGHT_FRONT) | FACE_LIGHT_BACK
else:
face.option = (face.option & ~FACE_LIGHT_BACK ) | FACE_LIGHT_FRONT
else:
#if cone_from_sphere_and_origin(cone, self._sphere, light._data, b) == 0: return 0
for i from 0 <= i < self._nb_faces:
face = self._faces + i
if self._option & MODEL_VERTEX_OPTIONS:
if ((self._vertex_options[face.v[0]] & VERTEX_INVISIBLE) and
(self._vertex_options[face.v[1]] & VERTEX_INVISIBLE) and
(self._vertex_options[face.v[2]] & VERTEX_INVISIBLE) and
((face.option & FACE_TRIANGLE) or (self._vertex_options[face.v[3]] & VERTEX_INVISIBLE))):
continue
normal = self._values + face.normal
if light._data[0] * normal[0] + light._data[1] * normal[1] + light._data[2] * normal[2] + normal[3] > 0.0:
face.option = (face.option & ~FACE_LIGHT_BACK ) | FACE_LIGHT_FRONT
else:
face.option = (face.option & ~FACE_LIGHT_FRONT) | FACE_LIGHT_BACK
# draw shadow body 1rst step
glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFF)
glFrontFace (GL_CW)
glStencilOp (GL_KEEP, GL_KEEP, GL_INCR)
glLoadMatrixf(coord_syst._render_matrix)
glNewList (displaylist, GL_COMPILE_AND_EXECUTE)
# test if camera is inside the shadow
#frustum = renderer._frustum(coord_syst)
#coord[0] = 0.5 * (frustum.points[0] + frustum.points[6])
#coord[1] = 0.5 * (frustum.points[1] + frustum.points[7])
#coord[2] = 0.5 * (frustum.points[2] + frustum.points[8])
#coord[3] = point_distance_to(coord, frustum.points)
#if sphere_is_in_cone(coord, cone):
if camera_inside_shadow == 1:
# camera is inside the shadow => special case
# we must draw the intersection of the shadow body with the camera front plane
plane[0], plane[1], plane[2], plane[3] = 0.0, 0.0, -1.0, -0.1 - renderer.current_camera._front
chunk = get_chunk()
chunk2 = get_chunk()
nb_inter = nb_segment = 0
# find edges and draw shadow body
for i from 0 <= i < self._nb_faces:
face = self._faces + i
if (face.option & FACE_LIGHT_BACK) or (face.option & FACE_DOUBLE_SIDED):
# test if neighbors are front
neighbors = self._simple_neighbors + (4 * i)
neighbors_side = self._simple_neighbors_side + (4 * i)
if face.option & FACE_QUAD: nbv = 4
else: nbv = 3
for k from 0 <= k < nbv:
neighbor_face = self._faces + neighbors[k]
if (
(not (face.option & FACE_DOUBLE_SIDED) and ((neighbors[k] == -1) or (neighbor_face.option & FACE_LIGHT_FRONT)))
or
( (face.option & FACE_DOUBLE_SIDED) and ((neighbors[k] == -1) or (((
(neighbors_side[k] == -1) and (((face.option & FACE_LIGHT_FRONT) and (neighbor_face.option & FACE_LIGHT_BACK )) or ((face.option & FACE_LIGHT_BACK) and (neighbor_face.option & FACE_LIGHT_FRONT)))
) or (
(neighbors_side[k] == 1) and (((face.option & FACE_LIGHT_FRONT) and (neighbor_face.option & FACE_LIGHT_FRONT)) or ((face.option & FACE_LIGHT_BACK) and (neighbor_face.option & FACE_LIGHT_BACK)))
)))))):
if face.option & FACE_LIGHT_BACK:
p1 = k
if k < nbv - 1: p2 = k + 1
else: p2 = 0
else: # Trace in reverse order
if k < nbv - 1: p1 = k + 1
else: p1 = 0
p2 = k
nb_segment = nb_segment + 1
chunk_add(chunk, self._coords + self._vertex_coords[face.v[p1]], 3 * sizeof(float))
chunk_add(chunk, self._coords + self._vertex_coords[face.v[p2]], 3 * sizeof(float))
chunk_add_int(chunk, -1)
# Joins the segments
joined = {}
for i from 0 <= i < nb_segment:
for j from 0 <= j < nb_segment:
if i == j: continue
if joined.has_key(j): continue
if memcmp(chunk.content + i * (6 * sizeof(float) + sizeof(int)) + 3 * sizeof(float), chunk.content + j * (6 * sizeof(float) + sizeof(int)), 3 * sizeof(float)) == 0:
(<int*> (chunk.content + (i * (6 * sizeof(float) + sizeof(int)) + 6 * sizeof(float))))[0] = j
joined[j] = 1
break
else:
print "* Soya * warning : drawing shadow for non-closed model (can't join segments)!"
glLoadIdentity()
i = 0
for k from 0 <= k < nb_segment:
if i == -1: break # error, was not able to join segments
coord_ptr = <float*> (chunk.content + i * (6 * sizeof(float) + sizeof(int)))
i = (<int*> (chunk.content + (i * (6 * sizeof(float) + sizeof(int)) + 6 * sizeof(float))))[0]
memcpy(fp1, coord_ptr , 3 * sizeof(float))
memcpy(fp2, coord_ptr + 3, 3 * sizeof(float))
if light._w == 0.0: # Directional light
memcpy(v1, light._data, 3 * sizeof(float))
memcpy(v2, light._data, 3 * sizeof(float))
else:
v1[0] = fp1[0] - light._data[0]
v1[1] = fp1[1] - light._data[1]
v1[2] = fp1[2] - light._data[2]
vector_normalize(v1)
v2[0] = fp2[0] - light._data[0]
v2[1] = fp2[1] - light._data[1]
v2[2] = fp2[2] - light._data[2]
vector_normalize(v2)
point_by_matrix(fp1, coord_syst._root_matrix())
point_by_matrix(fp1, renderer.current_camera._inverted_root_matrix())
point_by_matrix(fp2, coord_syst._root_matrix())
point_by_matrix(fp2, renderer.current_camera._inverted_root_matrix())
vector_by_matrix(v1, coord_syst._root_matrix())
vector_by_matrix(v1, renderer.current_camera._inverted_root_matrix())
vector_by_matrix(v2, coord_syst._root_matrix())
vector_by_matrix(v2, renderer.current_camera._inverted_root_matrix())
segment_projection_intersect_plane(fp1, v1, fp2, v2, b, plane, inter1, inter2, face_data, nb_points)
glBegin(GL_POLYGON)
for j from 0 <= j < nb_points[0]:
glVertex3fv(face_data + j * 3)
glEnd()
if nb_points[1]:
chunk_add_double(chunk2, <double> (inter1[0]))
chunk_add_double(chunk2, <double> (inter1[1]))
chunk_add_double(chunk2, <double> (inter1[2]))
nb_inter = nb_inter + 1
if nb_points[2]:
chunk_add_double(chunk2, <double> (inter2[0]))
chunk_add_double(chunk2, <double> (inter2[1]))
chunk_add_double(chunk2, <double> (inter2[2]))
nb_inter = nb_inter + 1
glLoadMatrixf(coord_syst._render_matrix)
glEndList()
# draw shadow body 3rd step
glDisable(GL_CULL_FACE)
glLoadIdentity()
gluTessBeginPolygon(SHADOW_TESS, NULL)
gluTessBeginContour(SHADOW_TESS)
for i from 0 <= i < nb_inter:
gluTessVertex(SHADOW_TESS, (<double*> chunk2.content) + i * 3, (<double*> chunk2.content) + i * 3)
gluTessEndContour(SHADOW_TESS)
gluTessEndPolygon(SHADOW_TESS)
glLoadMatrixf(coord_syst._render_matrix)
glEnable(GL_CULL_FACE)
# draw shadow body 2nd step
glFrontFace(GL_CCW)
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR)
glCallList (displaylist)
# Cleaning
# Free the double[3] created by model_shadow_tess_combine
i = SHADOW_TESS_CHUNK.nb
SHADOW_TESS_CHUNK.nb = 0
while SHADOW_TESS_CHUNK.nb < i: free(chunk_get_ptr(SHADOW_TESS_CHUNK))
SHADOW_TESS_CHUNK.nb = 0 # reset the chunk
drop_chunk(chunk)
drop_chunk(chunk2)
else:
# find edges and draw shadow body
glBegin(GL_QUADS)
for i from 0 <= i < self._nb_faces:
face = self._faces + i
if (face.option & FACE_LIGHT_BACK) or (face.option & FACE_DOUBLE_SIDED):
neighbors = self._simple_neighbors + (4 * i)
neighbors_side = self._simple_neighbors_side + (4 * i)
if face.option & FACE_QUAD: nbv = 4
else: nbv = 3
for k from 0 <= k < nbv:
neighbor_face = self._faces + neighbors[k]
if (
(not (face.option & FACE_DOUBLE_SIDED) and ((neighbors[k] == -1) or (neighbor_face.option & FACE_LIGHT_FRONT)))
or
( (face.option & FACE_DOUBLE_SIDED) and ((neighbors[k] == -1) or (((
(neighbors_side[k] == -1) and (((face.option & FACE_LIGHT_FRONT) and (neighbor_face.option & FACE_LIGHT_BACK )) or ((face.option & FACE_LIGHT_BACK) and (neighbor_face.option & FACE_LIGHT_FRONT)))
) or (
(neighbors_side[k] == 1) and (((face.option & FACE_LIGHT_FRONT) and (neighbor_face.option & FACE_LIGHT_FRONT)) or ((face.option & FACE_LIGHT_BACK) and (neighbor_face.option & FACE_LIGHT_BACK)))
)))))):
if face.option & FACE_LIGHT_BACK:
p1 = k
if k < nbv - 1: p2 = k + 1
else: p2 = 0
else: # Trace in reverse order
if k < nbv - 1: p1 = k + 1
else: p1 = 0
p2 = k
coord_ptr = self._coords + self._vertex_coords[face.v[p1]]
glVertex3fv(coord_ptr)
# push coord far away
if light._w == 0.0: # Directional light
glVertex3f(coord_ptr[0] + b * light._data[0], coord_ptr[1] + b * light._data[1], coord_ptr[2] + b * light._data[2])
else:
coord[0] = coord_ptr[0] - light._data[0]
coord[1] = coord_ptr[1] - light._data[1]
coord[2] = coord_ptr[2] - light._data[2]
vector_normalize(coord)
glVertex3f(coord_ptr[0] + b * coord[0], coord_ptr[1] + b * coord[1], coord_ptr[2] + b * coord[2])
coord_ptr = self._coords + self._vertex_coords[face.v[p2]]
# push coord far away
if light._w == 0.0: # Directional light
glVertex3f(coord_ptr[0] + b * light._data[0], coord_ptr[1] + b * light._data[1], coord_ptr[2] + b * light._data[2])
else:
coord[0] = coord_ptr[0] - light._data[0]
coord[1] = coord_ptr[1] - light._data[1]
coord[2] = coord_ptr[2] - light._data[2]
vector_normalize(coord)
glVertex3f(coord_ptr[0] + b * coord[0], coord_ptr[1] + b * coord[1], coord_ptr[2] + b * coord[2])
glVertex3fv(coord_ptr)
glEnd ()
glEndList() # XXX This line bugs on blam's computer
# draw shadow body 2nd step
glFrontFace(GL_CCW)
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR)
glCallList (displaylist)
return 1
cdef void model_option_activate(int option):
if option & MODEL_STATIC_LIT: disable_static_lights()
cdef void model_option_inactivate(int option):
if option & MODEL_STATIC_LIT: enable_static_lights()
cdef void face_option_activate(int option):
if option & FACE_DOUBLE_SIDED:
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE)
glDisable(GL_CULL_FACE)
if option & FACE_NON_LIT: glDisable(GL_LIGHTING)
cdef void face_option_inactivate(int option):
if option & FACE_DOUBLE_SIDED:
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE)
glEnable(GL_CULL_FACE)
if option & FACE_NON_LIT: glEnable(GL_LIGHTING)
cdef void model_shadow_tess_combine(double coords[3], void* vertex_data[4], float weight[4], void** out_data):
cdef double* d
d = out_data[0] = <double*> malloc(3 * sizeof(double))
memcpy(d, coords, 3 * sizeof(double))
chunk_add_ptr(SHADOW_TESS_CHUNK, d)
cdef void segment_projection_intersect_plane(float* p1, float* v1, float* p2, float* v2, float infinity, float plane[4], float* inter1, float* inter2, float* face, int* nb):
cdef int nb_face, has_i1, has_i2, has_i3, has_i4
cdef float p1d, p2d, pv1d, pv2d
cdef float f, fdiv
cdef float v[3], pv1[3], pv2[3], i1[3], i2[3], i3[3], i4[3]
nb_face = 0
has_i1 = has_i2 = has_i3 = has_i4 = 0
pv1[0] = p1[0] + infinity * v1[0]
pv1[1] = p1[1] + infinity * v1[1]
pv1[2] = p1[2] + infinity * v1[2]
pv2[0] = p2[0] + infinity * v2[0]
pv2[1] = p2[1] + infinity * v2[1]
pv2[2] = p2[2] + infinity * v2[2]
# compute the distances from points to plane
p1d = plane[0] * p1 [0] + plane[1] * p1 [1] + plane[2] * p1 [2] + plane[3]
p2d = plane[0] * p2 [0] + plane[1] * p2 [1] + plane[2] * p2 [2] + plane[3]
pv1d = plane[0] * pv1[0] + plane[1] * pv1[1] + plane[2] * pv1[2] + plane[3]
pv2d = plane[0] * pv2[0] + plane[1] * pv2[1] + plane[2] * pv2[2] + plane[3]
fdiv = plane[0] * v1[0] + plane[1] * v1[1] + plane[2] * v1[2]
if fdiv != 0.0:
f = - (plane[0] * p1[0] + plane[1] * p1[1] + plane[2] * p1[2] + plane[3]) / fdiv
if f > 0.0:
has_i1 = 1
i1[0] = p1[0] + f * v1[0]
i1[1] = p1[1] + f * v1[1]
i1[2] = p1[2] + f * v1[2]
fdiv = plane[0] * v2[0] + plane[1] * v2[1] + plane[2] * v2[2]
if fdiv != 0.0:
f = - (plane[0] * p2[0] + plane[1] * p2[1] + plane[2] * p2[2] + plane[3]) / fdiv
if f > 0.0:
has_i2 = 1
i2[0] = p2[0] + f * v2[0]
i2[1] = p2[1] + f * v2[1]
i2[2] = p2[2] + f * v2[2]
if p1d * p2d < 0.0:
v[0] = p1[0] - p2[0]
v[1] = p1[1] - p2[1]
v[2] = p1[2] - p2[2]
fdiv = plane[0] * v[0] + plane[1] * v[1] + plane[2] * v[2]
f = - (plane[0] * p1[0] + plane[1] * p1[1] + plane[2] * p1[2] + plane[3]) / fdiv
has_i3 = 1
i3[0] = p1[0] + f * v[0]
i3[1] = p1[1] + f * v[1]
i3[2] = p1[2] + f * v[2]
if pv1d * pv2d < 0.0:
v[0] = pv1[0] - pv2[0]
v[1] = pv1[1] - pv2[1]
v[2] = pv1[2] - pv2[2]
fdiv = plane[0] * v[0] + plane[1] * v[1] + plane[2] * v[2]
f = - (plane[0] * pv1[0] + plane[1] * pv1[1] + plane[2] * pv1[2] + plane[3]) / fdiv
has_i4 = 1
i4[0] = pv1[0] + f * v[0]
i4[1] = pv1[1] + f * v[1]
i4[2] = pv1[2] + f * v[2]
if has_i1 or has_i2: has_i4 = 0
if p1d > 0.0: # p1 is on the right side of the plane => keep it in face
memcpy(face + nb_face, p1, 3 * sizeof(float))
nb_face = nb_face + 3
if has_i1:
memcpy(face + nb_face, i1, 3 * sizeof(float))
nb_face = nb_face + 3
if (pv1d > 0.0) and not(has_i1 and (p1d > 0.0)):
memcpy(face + nb_face, pv1, 3 * sizeof(float))
nb_face = nb_face + 3
if has_i4:
memcpy(face + nb_face, i4, 3 * sizeof(float))
nb_face = nb_face + 3
if (pv2d > 0.0) and not(has_i2 and (p2d > 0.0)):
memcpy(face + nb_face, pv2, 3 * sizeof(float))
nb_face = nb_face + 3
if has_i2:
memcpy(face + nb_face, i2, 3 * sizeof(float))
nb_face = nb_face + 3
if p2d > 0.0:
memcpy(face + nb_face, p2, 3 * sizeof(float))
nb_face = nb_face + 3
if has_i3:
memcpy(face + nb_face, i3, 3 * sizeof(float))
nb_face = nb_face + 3
if has_i1: memcpy(inter1, i1, 3 * sizeof(float)); nb[1] = 1
elif has_i3: memcpy(inter1, i3, 3 * sizeof(float)); nb[1] = 1
elif has_i4: memcpy(inter1, i4, 3 * sizeof(float)); nb[1] = 1
else: nb[1] = 0
if has_i2: memcpy(inter2, i2, 3 * sizeof(float)); nb[2] = 1
elif has_i4: memcpy(inter2, i4, 3 * sizeof(float)); nb[2] = 1
elif has_i3: memcpy(inter2, i3, 3 * sizeof(float)); nb[2] = 1
else: nb[2] = 0
nb[0] = nb_face / 3
cdef class _ModelData(_Model):
def __init__(self, _Body body, _Model model): pass
|