1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
#!/usr/bin/python3
############################################################################
# Copyright (c) 2015 Saint Petersburg State University
# Copyright (c) 2011-2014 Saint Petersburg Academic University
# All Rights Reserved
# See file LICENSE for details.
############################################################################
import sys
import os
import shutil
import re
import getopt
import datetime
import subprocess
###################################################################
sys.path.append(os.path.join(os.path.abspath(sys.path[0]), 'conversion'))
sys.path.append(os.path.join(os.path.abspath(sys.path[0]), 'stat'))
bowtie_path = os.path.join(os.path.abspath(sys.path[0]), '../../../../external_tools/bowtie-0.12.7')
bowtie_build = os.path.join(bowtie_path, "bowtie-build")
bowtie = os.path.join(bowtie_path, "bowtie")
tmp_folder = "tmp"
output_dir = "results_" + datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
thread_num = 16
bin_size = 1
kmer = 1
make_latest_symlink = True
reference = ""
max_is = 1000000000
skip_trimming = False
###################################################################
long_options = "output-dir= reference= thread-num= bin-size= kmer-size= max-is= skip-trimming".split()
short_options = "o:r:t:b:k:x:s"
def usage():
print 'Estimation reads quality'
print 'Usage:', sys.argv[0], ' [options described below] datasets description-file(s)'
print ""
print "Options with parameters:"
print "-r\t--reference\tFile with reference genome (Mandatory parameter)"
print "-o\t--output-dir\tDirectory to store all result files"
print "-t\t--thread-num\tMax number of threads (default is " + str(thread_num) + ")"
print "-x\t--max-is\tMaximal inser size (default is none)"
print "-s\t--skip-trimming\tSkip N-trimming for speed-up"
def check_file(f):
if not os.path.isfile(f):
print "Error - file not found:", f
sys.exit(2)
return f
#####
print "\n", sys.argv[0], "is DEPRECATED!\nUse reads_quality.py --paired-mode instead!", "\n"
sys.exit(1)
#####
try:
options, datasets = getopt.gnu_getopt(sys.argv[1:], short_options, long_options)
except getopt.GetoptError, err:
print str(err)
print ""
usage()
sys.exit(1)
for opt, arg in options:
if opt in ('-o', "--output-dir"):
output_dir = arg
make_latest_symlink = False
elif opt in ('-r', "--reference"):
reference = arg
elif opt in ('-t', "--thread-num"):
thread_num = int(arg)
if thread_num < 1:
thread_num = 1
elif opt in ('-x', "--max-is"):
max_is = int(arg)
if max_is < 0:
max_is = 1000000000
elif opt in ('-s', "--skip-trimming"):
skip_trimming = True
else:
raise ValueError
for d in datasets:
check_file(d)
if not datasets:
print "no datasets"
usage()
sys.exit(1)
if not reference:
print 'no ref'
usage()
sys.exit(1)
###################################################################
def get_full_path(dataset, rel_path):
return os.path.abspath(os.path.join(os.path.dirname(dataset), rel_path))
def ungzip_if_needed(filename, output_folder, force_copy = False):
file_basename, file_extension = os.path.splitext(filename)
if file_extension == ".gz":
if not os.path.exists(output_folder):
os.makedirs(output_folder)
ungzipped_filename = os.path.join(output_folder, os.path.basename(file_basename))
ungzipped_file = open(ungzipped_filename, 'w')
subprocess.call(['gunzip', filename, '-c'], stdout=ungzipped_file)
ungzipped_file.close()
filename = ungzipped_filename
elif force_copy:
if not os.path.exists(output_folder):
os.makedirs(output_folder)
shutil.copy(filename, output_folder)
filename = os.path.join(output_folder, os.path.basename(filename))
return filename
###################################################################
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if make_latest_symlink:
latest_symlink = 'latest'
if os.path.islink(latest_symlink):
os.remove(latest_symlink)
os.symlink(output_dir, latest_symlink)
datasets_dict = dict()
print("Analyzing datasets")
for dataset in datasets:
basename = os.path.splitext(os.path.basename(dataset))[0]
cur_key = basename
i = 1
while datasets_dict.has_key(cur_key):
cur_key = basename + "_" + str(i)
cur_reads = []
for line in open(dataset, 'r'):
if line.startswith("paired_reads") or line.startswith("single_reads"):
line = line.replace('"', '')
reads = line.split()[1:]
for read in reads:
cur_reads.append(get_full_path(dataset, read))
if len(cur_reads) == 0:
print(" " + dataset + " was skipped because it contains no reads")
continue
datasets_dict[cur_key] = cur_reads
print(" " + dataset + " ==> " + cur_key)
if len(datasets_dict.keys()) == 0:
print("Can't continue estimation - all datasets were skipped")
sys.exit(1)
###################################################################
report_dict = {"header" : ["Dataset"]}
for dataset in datasets_dict.iterkeys():
report_dict[dataset] = [dataset]
tmp_folder = os.path.join(output_dir, tmp_folder)
if not os.path.exists(tmp_folder):
os.makedirs(tmp_folder)
if not skip_trimming:
print("Unpacking data (if needed) to temporary folder (" + tmp_folder + ") and N-trimming")
else:
print("Unpacking data (if needed) to temporary folder (" + tmp_folder + ")")
print(" reference...")
reference = ungzip_if_needed(reference, tmp_folder)
# TODO fastA analysis (we should convert all in fasta if there is at least one file in fasta)
for dataset in datasets_dict.iterkeys():
print(" " + dataset + "...")
ungzipped_reads = []
for read in datasets_dict[dataset]:
copied_read = ungzip_if_needed(read, os.path.join(tmp_folder, dataset), True)
if not skip_trimming:
import trim_ns
trim_ns.trim_file(copied_read, copied_read)
ungzipped_reads.append(copied_read)
datasets_dict[dataset] = ungzipped_reads
# creating index
index_folder = os.path.join(tmp_folder, "index")
if not os.path.exists(index_folder):
os.makedirs(index_folder)
index_name = os.path.splitext(os.path.basename(reference))[0]
index = os.path.join(index_folder, index_name)
print("Creating index " + index)
index_log = open(os.path.join(output_dir, "index.log"),'w')
index_err = open(os.path.join(output_dir, "index.err"),'w')
subprocess.call([bowtie_build, reference, index], stdout=index_log, stderr=index_err)
index_log.close()
index_err.close()
# bowtie-ing
print("Aligning (ignoring reads with multiple possible aligment)")
report_dict["header"] += ["Total reads", "Uniquely aligned reads", "Unaligned reads", "Non-niquely aligned reads"]
total_reads = {}
for dataset in datasets_dict.iterkeys():
print(" " + dataset + "...")
align_log = open(os.path.join(output_dir, dataset + ".log"),'w')
align_err = open(os.path.join(output_dir, dataset + ".err"),'w')
reads_string = reduce(lambda x, y: x + ',' + y, datasets_dict[dataset])
subprocess.call([bowtie, '-c', '-q', '-m', '1', '--suppress', '6,7,8', index, '-p', str(thread_num), reads_string], stdout=align_log, stderr=align_err)
align_log.close()
align_err.close()
align_err = open(os.path.join(output_dir, dataset + ".err"),'r')
suppressed_added = False
for line in align_err:
if line.startswith("# reads processed") or line.startswith("# reads with at least one") or line.startswith("# reads that failed"):
report_dict[dataset].append( (line.split(':')[1]).strip() )
elif line.startswith("# reads with alignments suppressed due to"):
report_dict[dataset].append( (line.split(':')[1]).strip() )
suppressed_added = True
if line.startswith("# reads processed"):
total_reads[dataset] = int((line.split(':')[1]).strip())
align_err.close()
if not suppressed_added:
report_dict[dataset].append( "0 (0.00%)" )
# raw-single
print("Parsing Bowtie log")
import raw_single
for dataset in datasets_dict.iterkeys():
print(" " + dataset + "...")
align_log = os.path.join(output_dir, dataset + ".log")
raw_file = os.path.join(output_dir, dataset + ".raw")
raw_single.raw_single(align_log, raw_file)
# get length of reference
ref_len = 0
for line in open(reference):
if line[0] != '>':
ref_len += len(line.strip())
# coverage # python reads_utils/stat/coverage.py ec.raw ec.cov 4639675 1000
print("Analyzing coverage")
report_dict["header"] += ["Genome mapped (%)"]
gaps_dict = {}
import coverage
for dataset in datasets_dict.iterkeys():
print(" " + dataset + "...")
raw_file = os.path.join(output_dir, dataset + ".raw")
cov_file = os.path.join(output_dir, dataset + ".cov")
cov = coverage.coverage(raw_file, cov_file, ref_len, 1, 1)
gaps_file = os.path.join(output_dir, dataset + ".gaps")
chunks_file = os.path.join(output_dir, os.path.splitext(os.path.basename(reference))[0] + "gaps_" + dataset + ".fasta")
gaps_dict[dataset] = coverage.analyze_gaps(cov_file, gaps_file, reference, chunks_file, kmer)
report_dict[dataset].append( str(cov * 100) )
# is form logs
print("Retaining insert size")
report_dict["header"] += ["Read length", "FR read pairs", "Insert size (deviation)", "RF read pairs", "Insert size (deviation)", "FF read pairs", "Insert size (deviation)", "One uniquely aligned read in pair", "Suppressed due to insert size limit"]
import is_from_single_log
for dataset in datasets_dict.iterkeys():
print(" " + dataset + "...")
align_log = os.path.join(output_dir, dataset + ".log")
stat = is_from_single_log.stat_from_log(align_log, max_is)
stat[1]["FR"].write_hist(os.path.join(output_dir, dataset + "_FR.is"))
stat[1]["RF"].write_hist(os.path.join(output_dir, dataset + "_RF.is"))
stat[1]["FF"].write_hist(os.path.join(output_dir, dataset + "_FF.is"))
read_pairs = total_reads[dataset] / 2
report_dict[dataset].append( str(stat[0]) )
report_dict[dataset].append( str(stat[1]["FR"].count) + " (" + str(round( 100.0 * float(stat[1]["FR"].count) / float(read_pairs), 2) ) + "%)" )
report_dict[dataset].append( str(round(stat[1]["FR"].mean, 2)) + " (" + str(round(stat[1]["FR"].dev, 2)) + ")" )
report_dict[dataset].append( str(stat[1]["RF"].count) + " (" + str(round( 100.0 * float(stat[1]["RF"].count) / float(read_pairs), 2) ) + "%)" )
report_dict[dataset].append( str(round(stat[1]["RF"].mean, 2)) + " (" + str(round(stat[1]["RF"].dev, 2)) + ")" )
report_dict[dataset].append( str(stat[1]["FF"].count) + " (" + str(round( 100.0 * float(stat[1]["FF"].count) / float(read_pairs), 2) ) + "%)" )
report_dict[dataset].append( str(round(stat[1]["FF"].mean, 2)) + " (" + str(round(stat[1]["FF"].dev, 2)) + ")" )
report_dict[dataset].append( str(stat[1]["AU"].count) + " (" + str(round( 100.0 * float(stat[1]["AU"].count) / float(read_pairs), 2) ) + "%)" )
report_dict[dataset].append( str(stat[1]["SP"].count) + " (" + str(round( 100.0 * float(stat[1]["SP"].count) / float(read_pairs), 2) ) + "%)" )
# total report
import report_maker
report_maker.do(report_dict, os.path.join(output_dir, 'report.horizontal'), os.path.join(output_dir, 'report'))
# clearing temp folder
shutil.rmtree(tmp_folder)
print("Done.")
|