1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
// Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
#include <algorithm>
namespace boost{ namespace math{ namespace detail{
//
// Functor for root finding algorithm:
//
template <class Dist>
struct distribution_quantile_finder
{
typedef typename Dist::value_type value_type;
typedef typename Dist::policy_type policy_type;
distribution_quantile_finder(const Dist d, value_type p, bool c)
: dist(d), target(p), comp(c) {}
value_type operator()(value_type const& x)
{
return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
}
private:
Dist dist;
value_type target;
bool comp;
};
//
// The purpose of adjust_bounds, is to toggle the last bit of the
// range so that both ends round to the same integer, if possible.
// If they do both round the same then we terminate the search
// for the root *very* quickly when finding an integer result.
// At the point that this function is called we know that "a" is
// below the root and "b" above it, so this change can not result
// in the root no longer being bracketed.
//
template <class Real, class Tol>
void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
template <class Real>
void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
{
BOOST_MATH_STD_USING
b -= tools::epsilon<Real>() * b;
}
template <class Real>
void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
{
BOOST_MATH_STD_USING
a += tools::epsilon<Real>() * a;
}
template <class Real>
void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
{
BOOST_MATH_STD_USING
a += tools::epsilon<Real>() * a;
b -= tools::epsilon<Real>() * b;
}
//
// This is where all the work is done:
//
template <class Dist, class Tolerance>
typename Dist::value_type
do_inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool comp,
typename Dist::value_type guess,
const typename Dist::value_type& multiplier,
typename Dist::value_type adder,
const Tolerance& tol,
boost::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
typedef typename Dist::policy_type policy_type;
static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
BOOST_MATH_STD_USING
distribution_quantile_finder<Dist> f(dist, p, comp);
//
// Max bounds of the distribution:
//
value_type min_bound, max_bound;
boost::math::tie(min_bound, max_bound) = support(dist);
if(guess > max_bound)
guess = max_bound;
if(guess < min_bound)
guess = min_bound;
value_type fa = f(guess);
boost::uintmax_t count = max_iter - 1;
value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
if(fa == 0)
return guess;
//
// For small expected results, just use a linear search:
//
if(guess < 10)
{
b = a;
while((a < 10) && (fa * fb >= 0))
{
if(fb <= 0)
{
a = b;
b = a + 1;
if(b > max_bound)
b = max_bound;
fb = f(b);
--count;
if(fb == 0)
return b;
if(a == b)
return b; // can't go any higher!
}
else
{
b = a;
a = (std::max)(value_type(b - 1), value_type(0));
if(a < min_bound)
a = min_bound;
fa = f(a);
--count;
if(fa == 0)
return a;
if(a == b)
return a; // We can't go any lower than this!
}
}
}
//
// Try and bracket using a couple of additions first,
// we're assuming that "guess" is likely to be accurate
// to the nearest int or so:
//
else if(adder != 0)
{
//
// If we're looking for a large result, then bump "adder" up
// by a bit to increase our chances of bracketing the root:
//
//adder = (std::max)(adder, 0.001f * guess);
if(fa < 0)
{
b = a + adder;
if(b > max_bound)
b = max_bound;
}
else
{
b = (std::max)(value_type(a - adder), value_type(0));
if(b < min_bound)
b = min_bound;
}
fb = f(b);
--count;
if(fb == 0)
return b;
if(count && (fa * fb >= 0))
{
//
// We didn't bracket the root, try
// once more:
//
a = b;
fa = fb;
if(fa < 0)
{
b = a + adder;
if(b > max_bound)
b = max_bound;
}
else
{
b = (std::max)(value_type(a - adder), value_type(0));
if(b < min_bound)
b = min_bound;
}
fb = f(b);
--count;
}
if(a > b)
{
using std::swap;
swap(a, b);
swap(fa, fb);
}
}
//
// If the root hasn't been bracketed yet, try again
// using the multiplier this time:
//
if((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(fa < 0)
{
//
// Zero is to the right of x2, so walk upwards
// until we find it:
//
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
{
if(count == 0)
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type());
a = b;
fa = fb;
b *= multiplier;
if(b > max_bound)
b = max_bound;
fb = f(b);
--count;
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
}
}
else
{
//
// Zero is to the left of a, so walk downwards
// until we find it:
//
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
{
if(fabs(a) < tools::min_value<value_type>())
{
// Escape route just in case the answer is zero!
max_iter -= count;
max_iter += 1;
return 0;
}
if(count == 0)
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type());
b = a;
fb = fa;
a /= multiplier;
if(a < min_bound)
a = min_bound;
fa = f(a);
--count;
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
}
}
}
max_iter -= count;
if(fa == 0)
return a;
if(fb == 0)
return b;
if(a == b)
return b; // Ran out of bounds trying to bracket - there is no answer!
//
// Adjust bounds so that if we're looking for an integer
// result, then both ends round the same way:
//
adjust_bounds(a, b, tol);
//
// We don't want zero or denorm lower bounds:
//
if(a < tools::min_value<value_type>())
a = tools::min_value<value_type>();
//
// Go ahead and find the root:
//
std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
max_iter += count;
BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
return (r.first + r.second) / 2;
}
//
// Some special routine for rounding up and down:
// We want to check and see if we are very close to an integer, and if so test to see if
// that integer is an exact root of the cdf. We do this because our root finder only
// guarantees to find *a root*, and there can sometimes be many consecutive floating
// point values which are all roots. This is especially true if the target probability
// is very close 1.
//
template <class Dist>
inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
{
BOOST_MATH_STD_USING
typename Dist::value_type cc = ceil(result);
typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1;
if(pp == p)
result = cc;
else
result = floor(result);
//
// Now find the smallest integer <= result for which we get an exact root:
//
while(result != 0)
{
cc = result - 1;
if(cc < support(d).first)
break;
pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
if(pp == p)
result = cc;
else if(c ? pp > p : pp < p)
break;
result -= 1;
}
return result;
}
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
template <class Dist>
inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
{
BOOST_MATH_STD_USING
typename Dist::value_type cc = floor(result);
typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0;
if(pp == p)
result = cc;
else
result = ceil(result);
//
// Now find the largest integer >= result for which we get an exact root:
//
while(true)
{
cc = result + 1;
if(cc > support(d).second)
break;
pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
if(pp == p)
result = cc;
else if(c ? pp < p : pp > p)
break;
result += 1;
}
return result;
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
//
// Now finally are the public API functions.
// There is one overload for each policy,
// each one is responsible for selecting the correct
// termination condition, and rounding the result
// to an int where required.
//
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
typename Dist::value_type p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::real>&,
boost::uintmax_t& max_iter)
{
if(p > 0.5)
{
p = 1 - p;
c = !c;
}
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
return do_inverse_discrete_quantile(
dist,
p,
c,
guess,
multiplier,
adder,
tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
max_iter);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_outwards>&,
boost::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
//
// What happens next depends on whether we're looking for an
// upper or lower quantile:
//
if(pp < 0.5f)
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 1 ? value_type(1) : (value_type)floor(guess)),
multiplier,
adder,
tools::equal_floor(),
max_iter), p, c);
// else:
return round_to_ceil(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(value_type)ceil(guess),
multiplier,
adder,
tools::equal_ceil(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_inwards>&,
boost::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
//
// What happens next depends on whether we're looking for an
// upper or lower quantile:
//
if(pp < 0.5f)
return round_to_ceil(dist, do_inverse_discrete_quantile(
dist,
p,
c,
ceil(guess),
multiplier,
adder,
tools::equal_ceil(),
max_iter), p, c);
// else:
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 1 ? value_type(1) : floor(guess)),
multiplier,
adder,
tools::equal_floor(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_down>&,
boost::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 1 ? value_type(1) : floor(guess)),
multiplier,
adder,
tools::equal_floor(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_up>&,
boost::uintmax_t& max_iter)
{
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
return round_to_ceil(dist, do_inverse_discrete_quantile(
dist,
p,
c,
ceil(guess),
multiplier,
adder,
tools::equal_ceil(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_nearest>&,
boost::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
//
// Note that we adjust the guess to the nearest half-integer:
// this increase the chances that we will bracket the root
// with two results that both round to the same integer quickly.
//
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f),
multiplier,
adder,
tools::equal_nearest_integer(),
max_iter) + 0.5f, p, c);
}
}}} // namespaces
#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
|