1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
// Copyright John Maddock 2006, 2007.
// Copyright Paul A. Bristow 2006, 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STATS_NORMAL_HPP
#define BOOST_STATS_NORMAL_HPP
// http://en.wikipedia.org/wiki/Normal_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "Normal Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/NormalDistribution.html
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <utility>
namespace boost{ namespace math{
template <class RealType = double, class Policy = policies::policy<> >
class normal_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
normal_distribution(RealType l_mean = 0, RealType sd = 1)
: m_mean(l_mean), m_sd(sd)
{ // Default is a 'standard' normal distribution N01.
static const char* function = "boost::math::normal_distribution<%1%>::normal_distribution";
RealType result;
detail::check_scale(function, sd, &result, Policy());
detail::check_location(function, l_mean, &result, Policy());
}
RealType mean()const
{ // alias for location.
return m_mean;
}
RealType standard_deviation()const
{ // alias for scale.
return m_sd;
}
// Synonyms, provided to allow generic use of find_location and find_scale.
RealType location()const
{ // location.
return m_mean;
}
RealType scale()const
{ // scale.
return m_sd;
}
private:
//
// Data members:
//
RealType m_mean; // distribution mean or location.
RealType m_sd; // distribution standard deviation or scale.
}; // class normal_distribution
typedef normal_distribution<double> normal;
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
if (std::numeric_limits<RealType>::has_infinity)
{
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
}
else
{ // Can only use max_value.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const normal_distribution<RealType, Policy>& /*dist*/)
{ // This is range values for random variable x where cdf rises from 0 to 1, and outside it, the pdf is zero.
if (std::numeric_limits<RealType>::has_infinity)
{
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
}
else
{ // Can only use max_value.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
template <class RealType, class Policy>
inline RealType pdf(const normal_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = dist.standard_deviation();
RealType mean = dist.mean();
static const char* function = "boost::math::pdf(const normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
return 0; // pdf + and - infinity is zero.
}
// Below produces MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
//{ // pdf + and - infinity is zero.
// return 0;
//}
if(false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
RealType exponent = x - mean;
exponent *= -exponent;
exponent /= 2 * sd * sd;
result = exp(exponent);
result /= sd * sqrt(2 * constants::pi<RealType>());
return result;
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const normal_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = dist.standard_deviation();
RealType mean = dist.mean();
static const char* function = "boost::math::cdf(const normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
if(x < 0) return 0; // -infinity
return 1; // + infinity
}
// These produce MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
//{ // cdf +infinity is unity.
// return 1;
//}
//if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
//{ // cdf -infinity is zero.
// return 0;
//}
if(false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
RealType diff = (x - mean) / (sd * constants::root_two<RealType>());
result = boost::math::erfc(-diff, Policy()) / 2;
return result;
} // cdf
template <class RealType, class Policy>
inline RealType quantile(const normal_distribution<RealType, Policy>& dist, const RealType& p)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = dist.standard_deviation();
RealType mean = dist.mean();
static const char* function = "boost::math::quantile(const normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if(false == detail::check_probability(function, p, &result, Policy()))
return result;
result= boost::math::erfc_inv(2 * p, Policy());
result = -result;
result *= sd * constants::root_two<RealType>();
result += mean;
return result;
} // quantile
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<normal_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = c.dist.standard_deviation();
RealType mean = c.dist.mean();
RealType x = c.param;
static const char* function = "boost::math::cdf(const complement(normal_distribution<%1%>&), %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if((boost::math::isinf)(x))
{
if(x < 0) return 1; // cdf complement -infinity is unity.
return 0; // cdf complement +infinity is zero
}
// These produce MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
//{ // cdf complement +infinity is zero.
// return 0;
//}
//if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
//{ // cdf complement -infinity is unity.
// return 1;
//}
if(false == detail::check_x(function, x, &result, Policy()))
return result;
RealType diff = (x - mean) / (sd * constants::root_two<RealType>());
result = boost::math::erfc(diff, Policy()) / 2;
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<normal_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = c.dist.standard_deviation();
RealType mean = c.dist.mean();
static const char* function = "boost::math::quantile(const complement(normal_distribution<%1%>&), %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
RealType q = c.param;
if(false == detail::check_probability(function, q, &result, Policy()))
return result;
result = boost::math::erfc_inv(2 * q, Policy());
result *= sd * constants::root_two<RealType>();
result += mean;
return result;
} // quantile
template <class RealType, class Policy>
inline RealType mean(const normal_distribution<RealType, Policy>& dist)
{
return dist.mean();
}
template <class RealType, class Policy>
inline RealType standard_deviation(const normal_distribution<RealType, Policy>& dist)
{
return dist.standard_deviation();
}
template <class RealType, class Policy>
inline RealType mode(const normal_distribution<RealType, Policy>& dist)
{
return dist.mean();
}
template <class RealType, class Policy>
inline RealType median(const normal_distribution<RealType, Policy>& dist)
{
return dist.mean();
}
template <class RealType, class Policy>
inline RealType skewness(const normal_distribution<RealType, Policy>& /*dist*/)
{
return 0;
}
template <class RealType, class Policy>
inline RealType kurtosis(const normal_distribution<RealType, Policy>& /*dist*/)
{
return 3;
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const normal_distribution<RealType, Policy>& /*dist*/)
{
return 0;
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_NORMAL_HPP
|