1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
// Copyright Benjamin Sobotta 2012
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STATS_SKEW_NORMAL_HPP
#define BOOST_STATS_SKEW_NORMAL_HPP
// http://en.wikipedia.org/wiki/Skew_normal_distribution
// http://azzalini.stat.unipd.it/SN/
// Also:
// Azzalini, A. (1985). "A class of distributions which includes the normal ones".
// Scand. J. Statist. 12: 171-178.
#include <boost/math/distributions/fwd.hpp> // TODO add skew_normal distribution to fwd.hpp!
#include <boost/math/special_functions/owens_t.hpp> // Owen's T function
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/normal.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/tools/tuple.hpp>
#include <boost/math/tools/roots.hpp> // Newton-Raphson
#include <boost/assert.hpp>
#include <boost/math/distributions/detail/generic_mode.hpp> // pdf max finder.
#include <utility>
#include <algorithm> // std::lower_bound, std::distance
namespace boost{ namespace math{
namespace detail
{
template <class RealType, class Policy>
inline bool check_skew_normal_shape(
const char* function,
RealType shape,
RealType* result,
const Policy& pol)
{
if(!(boost::math::isfinite)(shape))
{
*result =
policies::raise_domain_error<RealType>(function,
"Shape parameter is %1%, but must be finite!",
shape, pol);
return false;
}
return true;
}
} // namespace detail
template <class RealType = double, class Policy = policies::policy<> >
class skew_normal_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
skew_normal_distribution(RealType l_location = 0, RealType l_scale = 1, RealType l_shape = 0)
: location_(l_location), scale_(l_scale), shape_(l_shape)
{ // Default is a 'standard' normal distribution N01. (shape=0 results in the normal distribution with no skew)
static const char* function = "boost::math::skew_normal_distribution<%1%>::skew_normal_distribution";
RealType result;
detail::check_scale(function, l_scale, &result, Policy());
detail::check_location(function, l_location, &result, Policy());
detail::check_skew_normal_shape(function, l_shape, &result, Policy());
}
RealType location()const
{
return location_;
}
RealType scale()const
{
return scale_;
}
RealType shape()const
{
return shape_;
}
private:
//
// Data members:
//
RealType location_; // distribution location.
RealType scale_; // distribution scale.
RealType shape_; // distribution shape.
}; // class skew_normal_distribution
typedef skew_normal_distribution<double> skew_normal;
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const skew_normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(
std::numeric_limits<RealType>::has_infinity ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>(),
std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const skew_normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
inline RealType pdf(const skew_normal_distribution<RealType, Policy>& dist, const RealType& x)
{
const RealType scale = dist.scale();
const RealType location = dist.location();
const RealType shape = dist.shape();
static const char* function = "boost::math::pdf(const skew_normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, scale, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, location, &result, Policy()))
{
return result;
}
if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
return 0; // pdf + and - infinity is zero.
}
// Below produces MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
//{ // pdf + and - infinity is zero.
// return 0;
//}
if(false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
const RealType transformed_x = (x-location)/scale;
normal_distribution<RealType, Policy> std_normal;
result = pdf(std_normal, transformed_x) * cdf(std_normal, shape*transformed_x) * 2 / scale;
return result;
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const skew_normal_distribution<RealType, Policy>& dist, const RealType& x)
{
const RealType scale = dist.scale();
const RealType location = dist.location();
const RealType shape = dist.shape();
static const char* function = "boost::math::cdf(const skew_normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, scale, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, location, &result, Policy()))
{
return result;
}
if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
if(x < 0) return 0; // -infinity
return 1; // + infinity
}
// These produce MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
//{ // cdf +infinity is unity.
// return 1;
//}
//if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
//{ // cdf -infinity is zero.
// return 0;
//}
if(false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
const RealType transformed_x = (x-location)/scale;
normal_distribution<RealType, Policy> std_normal;
result = cdf(std_normal, transformed_x) - owens_t(transformed_x, shape)*static_cast<RealType>(2);
return result;
} // cdf
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<skew_normal_distribution<RealType, Policy>, RealType>& c)
{
const RealType scale = c.dist.scale();
const RealType location = c.dist.location();
const RealType shape = c.dist.shape();
const RealType x = c.param;
static const char* function = "boost::math::cdf(const complement(skew_normal_distribution<%1%>&), %1%)";
if((boost::math::isinf)(x))
{
if(x < 0) return 1; // cdf complement -infinity is unity.
return 0; // cdf complement +infinity is zero
}
// These produce MSVC 4127 warnings, so the above used instead.
//if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
//{ // cdf complement +infinity is zero.
// return 0;
//}
//if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
//{ // cdf complement -infinity is unity.
// return 1;
//}
RealType result = 0;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, location, &result, Policy()))
return result;
if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
return result;
if(false == detail::check_x(function, x, &result, Policy()))
return result;
const RealType transformed_x = (x-location)/scale;
normal_distribution<RealType, Policy> std_normal;
result = cdf(complement(std_normal, transformed_x)) + owens_t(transformed_x, shape)*static_cast<RealType>(2);
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType location(const skew_normal_distribution<RealType, Policy>& dist)
{
return dist.location();
}
template <class RealType, class Policy>
inline RealType scale(const skew_normal_distribution<RealType, Policy>& dist)
{
return dist.scale();
}
template <class RealType, class Policy>
inline RealType shape(const skew_normal_distribution<RealType, Policy>& dist)
{
return dist.shape();
}
template <class RealType, class Policy>
inline RealType mean(const skew_normal_distribution<RealType, Policy>& dist)
{
BOOST_MATH_STD_USING // for ADL of std functions
using namespace boost::math::constants;
//const RealType delta = dist.shape() / sqrt(static_cast<RealType>(1)+dist.shape()*dist.shape());
//return dist.location() + dist.scale() * delta * root_two_div_pi<RealType>();
return dist.location() + dist.scale() * dist.shape() / sqrt(pi<RealType>()+pi<RealType>()*dist.shape()*dist.shape()) * root_two<RealType>();
}
template <class RealType, class Policy>
inline RealType variance(const skew_normal_distribution<RealType, Policy>& dist)
{
using namespace boost::math::constants;
const RealType delta2 = static_cast<RealType>(1) / (static_cast<RealType>(1)+static_cast<RealType>(1)/(dist.shape()*dist.shape()));
//const RealType inv_delta2 = static_cast<RealType>(1)+static_cast<RealType>(1)/(dist.shape()*dist.shape());
RealType variance = dist.scale()*dist.scale()*(static_cast<RealType>(1)-two_div_pi<RealType>()*delta2);
//RealType variance = dist.scale()*dist.scale()*(static_cast<RealType>(1)-two_div_pi<RealType>()/inv_delta2);
return variance;
}
namespace detail
{
/*
TODO No closed expression for mode, so use max of pdf.
*/
template <class RealType, class Policy>
inline RealType mode_fallback(const skew_normal_distribution<RealType, Policy>& dist)
{ // mode.
static const char* function = "mode(skew_normal_distribution<%1%> const&)";
const RealType scale = dist.scale();
const RealType location = dist.location();
const RealType shape = dist.shape();
RealType result;
if(!detail::check_scale(
function,
scale, &result, Policy())
||
!detail::check_skew_normal_shape(
function,
shape,
&result,
Policy()))
return result;
if( shape == 0 )
{
return location;
}
if( shape < 0 )
{
skew_normal_distribution<RealType, Policy> D(0, 1, -shape);
result = mode_fallback(D);
result = location-scale*result;
return result;
}
BOOST_MATH_STD_USING
// 21 elements
static const RealType shapes[] = {
0.0,
1.000000000000000e-004,
2.069138081114790e-004,
4.281332398719396e-004,
8.858667904100824e-004,
1.832980710832436e-003,
3.792690190732250e-003,
7.847599703514606e-003,
1.623776739188722e-002,
3.359818286283781e-002,
6.951927961775606e-002,
1.438449888287663e-001,
2.976351441631319e-001,
6.158482110660261e-001,
1.274274985703135e+000,
2.636650898730361e+000,
5.455594781168514e+000,
1.128837891684688e+001,
2.335721469090121e+001,
4.832930238571753e+001,
1.000000000000000e+002};
// 21 elements
static const RealType guess[] = {
0.0,
5.000050000525391e-005,
1.500015000148736e-004,
3.500035000350010e-004,
7.500075000752560e-004,
1.450014500145258e-003,
3.050030500305390e-003,
6.250062500624765e-003,
1.295012950129504e-002,
2.675026750267495e-002,
5.525055250552491e-002,
1.132511325113255e-001,
2.249522495224952e-001,
3.992539925399257e-001,
5.353553535535358e-001,
4.954549545495457e-001,
3.524535245352451e-001,
2.182521825218249e-001,
1.256512565125654e-001,
6.945069450694508e-002,
3.735037350373460e-002
};
const RealType* result_ptr = std::lower_bound(shapes, shapes+21, shape);
typedef typename std::iterator_traits<RealType*>::difference_type diff_type;
const diff_type d = std::distance(shapes, result_ptr);
BOOST_ASSERT(d > static_cast<diff_type>(0));
// refine
if(d < static_cast<diff_type>(21)) // shape smaller 100
{
result = guess[d-static_cast<diff_type>(1)]
+ (guess[d]-guess[d-static_cast<diff_type>(1)])/(shapes[d]-shapes[d-static_cast<diff_type>(1)])
* (shape-shapes[d-static_cast<diff_type>(1)]);
}
else // shape greater 100
{
result = 1e-4;
}
skew_normal_distribution<RealType, Policy> helper(0, 1, shape);
result = detail::generic_find_mode_01(helper, result, function);
result = result*scale + location;
return result;
} // mode_fallback
/*
* TODO No closed expression for mode, so use f'(x) = 0
*/
template <class RealType, class Policy>
struct skew_normal_mode_functor
{
skew_normal_mode_functor(const boost::math::skew_normal_distribution<RealType, Policy> dist)
: distribution(dist)
{
}
boost::math::tuple<RealType, RealType> operator()(RealType const& x)
{
normal_distribution<RealType, Policy> std_normal;
const RealType shape = distribution.shape();
const RealType pdf_x = pdf(distribution, x);
const RealType normpdf_x = pdf(std_normal, x);
const RealType normpdf_ax = pdf(std_normal, x*shape);
RealType fx = static_cast<RealType>(2)*shape*normpdf_ax*normpdf_x - x*pdf_x;
RealType dx = static_cast<RealType>(2)*shape*x*normpdf_x*normpdf_ax*(static_cast<RealType>(1) + shape*shape) + pdf_x + x*fx;
// return both function evaluation difference f(x) and 1st derivative f'(x).
return boost::math::make_tuple(fx, -dx);
}
private:
const boost::math::skew_normal_distribution<RealType, Policy> distribution;
};
} // namespace detail
template <class RealType, class Policy>
inline RealType mode(const skew_normal_distribution<RealType, Policy>& dist)
{
const RealType scale = dist.scale();
const RealType location = dist.location();
const RealType shape = dist.shape();
static const char* function = "boost::math::mode(const skew_normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, location, &result, Policy()))
return result;
if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
return result;
if( shape == 0 )
{
return location;
}
if( shape < 0 )
{
skew_normal_distribution<RealType, Policy> D(0, 1, -shape);
result = mode(D);
result = location-scale*result;
return result;
}
// 21 elements
static const RealType shapes[] = {
0.0,
static_cast<RealType>(1.000000000000000e-004),
static_cast<RealType>(2.069138081114790e-004),
static_cast<RealType>(4.281332398719396e-004),
static_cast<RealType>(8.858667904100824e-004),
static_cast<RealType>(1.832980710832436e-003),
static_cast<RealType>(3.792690190732250e-003),
static_cast<RealType>(7.847599703514606e-003),
static_cast<RealType>(1.623776739188722e-002),
static_cast<RealType>(3.359818286283781e-002),
static_cast<RealType>(6.951927961775606e-002),
static_cast<RealType>(1.438449888287663e-001),
static_cast<RealType>(2.976351441631319e-001),
static_cast<RealType>(6.158482110660261e-001),
static_cast<RealType>(1.274274985703135e+000),
static_cast<RealType>(2.636650898730361e+000),
static_cast<RealType>(5.455594781168514e+000),
static_cast<RealType>(1.128837891684688e+001),
static_cast<RealType>(2.335721469090121e+001),
static_cast<RealType>(4.832930238571753e+001),
static_cast<RealType>(1.000000000000000e+002)
};
// 21 elements
static const RealType guess[] = {
0.0,
static_cast<RealType>(5.000050000525391e-005),
static_cast<RealType>(1.500015000148736e-004),
static_cast<RealType>(3.500035000350010e-004),
static_cast<RealType>(7.500075000752560e-004),
static_cast<RealType>(1.450014500145258e-003),
static_cast<RealType>(3.050030500305390e-003),
static_cast<RealType>(6.250062500624765e-003),
static_cast<RealType>(1.295012950129504e-002),
static_cast<RealType>(2.675026750267495e-002),
static_cast<RealType>(5.525055250552491e-002),
static_cast<RealType>(1.132511325113255e-001),
static_cast<RealType>(2.249522495224952e-001),
static_cast<RealType>(3.992539925399257e-001),
static_cast<RealType>(5.353553535535358e-001),
static_cast<RealType>(4.954549545495457e-001),
static_cast<RealType>(3.524535245352451e-001),
static_cast<RealType>(2.182521825218249e-001),
static_cast<RealType>(1.256512565125654e-001),
static_cast<RealType>(6.945069450694508e-002),
static_cast<RealType>(3.735037350373460e-002)
};
const RealType* result_ptr = std::lower_bound(shapes, shapes+21, shape);
typedef typename std::iterator_traits<RealType*>::difference_type diff_type;
const diff_type d = std::distance(shapes, result_ptr);
BOOST_ASSERT(d > static_cast<diff_type>(0));
// TODO: make the search bounds smarter, depending on the shape parameter
RealType search_min = 0; // below zero was caught above
RealType search_max = 0.55f; // will never go above 0.55
// refine
if(d < static_cast<diff_type>(21)) // shape smaller 100
{
// it is safe to assume that d > 0, because shape==0.0 is caught earlier
result = guess[d-static_cast<diff_type>(1)]
+ (guess[d]-guess[d-static_cast<diff_type>(1)])/(shapes[d]-shapes[d-static_cast<diff_type>(1)])
* (shape-shapes[d-static_cast<diff_type>(1)]);
}
else // shape greater 100
{
result = 1e-4f;
search_max = guess[19]; // set 19 instead of 20 to have a safety margin because the table may not be exact @ shape=100
}
const int get_digits = policies::digits<RealType, Policy>();// get digits from policy,
boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
skew_normal_distribution<RealType, Policy> helper(0, 1, shape);
result = tools::newton_raphson_iterate(detail::skew_normal_mode_functor<RealType, Policy>(helper), result,
search_min, search_max, get_digits, m);
result = result*scale + location;
return result;
}
template <class RealType, class Policy>
inline RealType skewness(const skew_normal_distribution<RealType, Policy>& dist)
{
BOOST_MATH_STD_USING // for ADL of std functions
using namespace boost::math::constants;
static const RealType factor = four_minus_pi<RealType>()/static_cast<RealType>(2);
const RealType delta = dist.shape() / sqrt(static_cast<RealType>(1)+dist.shape()*dist.shape());
return factor * pow(root_two_div_pi<RealType>() * delta, 3) /
pow(static_cast<RealType>(1)-two_div_pi<RealType>()*delta*delta, static_cast<RealType>(1.5));
}
template <class RealType, class Policy>
inline RealType kurtosis(const skew_normal_distribution<RealType, Policy>& dist)
{
return kurtosis_excess(dist)+static_cast<RealType>(3);
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const skew_normal_distribution<RealType, Policy>& dist)
{
using namespace boost::math::constants;
static const RealType factor = pi_minus_three<RealType>()*static_cast<RealType>(2);
const RealType delta2 = static_cast<RealType>(1) / (static_cast<RealType>(1)+static_cast<RealType>(1)/(dist.shape()*dist.shape()));
const RealType x = static_cast<RealType>(1)-two_div_pi<RealType>()*delta2;
const RealType y = two_div_pi<RealType>() * delta2;
return factor * y*y / (x*x);
}
namespace detail
{
template <class RealType, class Policy>
struct skew_normal_quantile_functor
{
skew_normal_quantile_functor(const boost::math::skew_normal_distribution<RealType, Policy> dist, RealType const& p)
: distribution(dist), prob(p)
{
}
boost::math::tuple<RealType, RealType> operator()(RealType const& x)
{
RealType c = cdf(distribution, x);
RealType fx = c - prob; // Difference cdf - value - to minimize.
RealType dx = pdf(distribution, x); // pdf is 1st derivative.
// return both function evaluation difference f(x) and 1st derivative f'(x).
return boost::math::make_tuple(fx, dx);
}
private:
const boost::math::skew_normal_distribution<RealType, Policy> distribution;
RealType prob;
};
} // namespace detail
template <class RealType, class Policy>
inline RealType quantile(const skew_normal_distribution<RealType, Policy>& dist, const RealType& p)
{
const RealType scale = dist.scale();
const RealType location = dist.location();
const RealType shape = dist.shape();
static const char* function = "boost::math::quantile(const skew_normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, location, &result, Policy()))
return result;
if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
return result;
if(false == detail::check_probability(function, p, &result, Policy()))
return result;
// Compute initial guess via Cornish-Fisher expansion.
RealType x = -boost::math::erfc_inv(2 * p, Policy()) * constants::root_two<RealType>();
// Avoid unnecessary computations if there is no skew.
if(shape != 0)
{
const RealType skew = skewness(dist);
const RealType exk = kurtosis_excess(dist);
x = x + (x*x-static_cast<RealType>(1))*skew/static_cast<RealType>(6)
+ x*(x*x-static_cast<RealType>(3))*exk/static_cast<RealType>(24)
- x*(static_cast<RealType>(2)*x*x-static_cast<RealType>(5))*skew*skew/static_cast<RealType>(36);
} // if(shape != 0)
result = standard_deviation(dist)*x+mean(dist);
// handle special case of non-skew normal distribution.
if(shape == 0)
return result;
// refine the result by numerically searching the root of (p-cdf)
const RealType search_min = range(dist).first;
const RealType search_max = range(dist).second;
const int get_digits = policies::digits<RealType, Policy>();// get digits from policy,
boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
result = tools::newton_raphson_iterate(detail::skew_normal_quantile_functor<RealType, Policy>(dist, p), result,
search_min, search_max, get_digits, m);
return result;
} // quantile
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<skew_normal_distribution<RealType, Policy>, RealType>& c)
{
const RealType scale = c.dist.scale();
const RealType location = c.dist.location();
const RealType shape = c.dist.shape();
static const char* function = "boost::math::quantile(const complement(skew_normal_distribution<%1%>&), %1%)";
RealType result = 0;
if(false == detail::check_scale(function, scale, &result, Policy()))
return result;
if(false == detail::check_location(function, location, &result, Policy()))
return result;
if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
return result;
RealType q = c.param;
if(false == detail::check_probability(function, q, &result, Policy()))
return result;
skew_normal_distribution<RealType, Policy> D(-location, scale, -shape);
result = -quantile(D, q);
return result;
} // quantile
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_SKEW_NORMAL_HPP
|