1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_OPERATION_BLOCKED_
#define _BOOST_UBLAS_OPERATION_BLOCKED_
#include <boost/numeric/ublas/traits.hpp>
#include <boost/numeric/ublas/detail/vector_assign.hpp> // indexing_vector_assign
#include <boost/numeric/ublas/detail/matrix_assign.hpp> // indexing_matrix_assign
namespace boost { namespace numeric { namespace ublas {
template<class V, typename V::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
V
block_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef V vector_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
const size_type block_size = BS;
V v (e1 ().size1 ());
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v.size ());
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_assign> (cv, prod (e1, e2));
#endif
size_type i_size = e1 ().size1 ();
size_type j_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size ());
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
vector_range<vector_type> v_range (v, range (i_begin, i_end));
#else
// vector<value_type, bounded_array<value_type, block_size> > v_range (i_end - i_begin);
vector<value_type> v_range (i_end - i_begin);
#endif
v_range.assign (zero_vector<value_type> (i_end - i_begin));
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (j_begin, j_end));
const vector_range<expression2_type> e2_range (e2 (), range (j_begin, j_end));
v_range.plus_assign (prod (e1_range, e2_range));
#else
// const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (j_begin, j_end)));
// const vector<value_type, bounded_array<value_type, block_size> > e2_range (project (e2 (), range (j_begin, j_end)));
const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (j_begin, j_end)));
const vector<value_type> e2_range (project (e2 (), range (j_begin, j_end)));
v_range.plus_assign (prod (e1_range, e2_range));
#endif
}
#ifndef BOOST_UBLAS_NO_CACHE
project (v, range (i_begin, i_end)).assign (v_range);
#endif
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, typename V::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
V
block_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef V vector_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
const size_type block_size = BS;
V v (e2 ().size2 ());
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v.size ());
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_assign> (cv, prod (e1, e2));
#endif
size_type i_size = BOOST_UBLAS_SAME (e1 ().size (), e2 ().size1 ());
size_type j_size = e2 ().size2 ();
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
vector_range<vector_type> v_range (v, range (j_begin, j_end));
#else
// vector<value_type, bounded_array<value_type, block_size> > v_range (j_end - j_begin);
vector<value_type> v_range (j_end - j_begin);
#endif
v_range.assign (zero_vector<value_type> (j_end - j_begin));
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const vector_range<expression1_type> e1_range (e1 (), range (i_begin, i_end));
const matrix_range<expression2_type> e2_range (e2 (), range (i_begin, i_end), range (j_begin, j_end));
#else
// const vector<value_type, bounded_array<value_type, block_size> > e1_range (project (e1 (), range (i_begin, i_end)));
// const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (i_begin, i_end), range (j_begin, j_end)));
const vector<value_type> e1_range (project (e1 (), range (i_begin, i_end)));
const matrix<value_type, column_major> e2_range (project (e2 (), range (i_begin, i_end), range (j_begin, j_end)));
#endif
v_range.plus_assign (prod (e1_range, e2_range));
}
#ifndef BOOST_UBLAS_NO_CACHE
project (v, range (j_begin, j_end)).assign (v_range);
#endif
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class M, typename M::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
M
block_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
const size_type block_size = BS;
M m (e1 ().size1 (), e2 ().size2 ());
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_assign> (cm, prod (e1, e2), row_major_tag ());
disable_type_check<bool>::value = true;
#endif
size_type i_size = e1 ().size1 ();
size_type j_size = e2 ().size2 ();
size_type k_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
matrix_range<matrix_type> m_range (m, range (i_begin, i_end), range (j_begin, j_end));
#else
// matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > m_range (i_end - i_begin, j_end - j_begin);
matrix<value_type, row_major> m_range (i_end - i_begin, j_end - j_begin);
#endif
m_range.assign (zero_matrix<value_type> (i_end - i_begin, j_end - j_begin));
for (size_type k_begin = 0; k_begin < k_size; k_begin += block_size) {
size_type k_end = k_begin + (std::min) (k_size - k_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (k_begin, k_end));
const matrix_range<expression2_type> e2_range (e2 (), range (k_begin, k_end), range (j_begin, j_end));
#else
// const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
// const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
const matrix<value_type, column_major> e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
#endif
m_range.plus_assign (prod (e1_range, e2_range));
}
#ifndef BOOST_UBLAS_NO_CACHE
project (m, range (i_begin, i_end), range (j_begin, j_end)).assign (m_range);
#endif
}
}
#if BOOST_UBLAS_TYPE_CHECK
disable_type_check<bool>::value = false;
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, typename M::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
M
block_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
const size_type block_size = BS;
M m (e1 ().size1 (), e2 ().size2 ());
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_assign> (cm, prod (e1, e2), column_major_tag ());
disable_type_check<bool>::value = true;
#endif
size_type i_size = e1 ().size1 ();
size_type j_size = e2 ().size2 ();
size_type k_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
matrix_range<matrix_type> m_range (m, range (i_begin, i_end), range (j_begin, j_end));
#else
// matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > m_range (i_end - i_begin, j_end - j_begin);
matrix<value_type, column_major> m_range (i_end - i_begin, j_end - j_begin);
#endif
m_range.assign (zero_matrix<value_type> (i_end - i_begin, j_end - j_begin));
for (size_type k_begin = 0; k_begin < k_size; k_begin += block_size) {
size_type k_end = k_begin + (std::min) (k_size - k_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (k_begin, k_end));
const matrix_range<expression2_type> e2_range (e2 (), range (k_begin, k_end), range (j_begin, j_end));
#else
// const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
// const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
const matrix<value_type, column_major> e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
#endif
m_range.plus_assign (prod (e1_range, e2_range));
}
#ifndef BOOST_UBLAS_NO_CACHE
project (m, range (i_begin, i_end), range (j_begin, j_end)).assign (m_range);
#endif
}
}
#if BOOST_UBLAS_TYPE_CHECK
disable_type_check<bool>::value = false;
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
// Dispatcher
template<class M, typename M::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
M
block_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef typename M::orientation_category orientation_category;
return block_prod<M, BS> (e1, e2, orientation_category ());
}
}}}
#endif
|