1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
// Copyright Daniel Wallin, David Abrahams 2005. Use, modification and
// distribution is subject to the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef ARG_LIST_050329_HPP
#define ARG_LIST_050329_HPP
#include <boost/parameter/aux_/void.hpp>
#include <boost/parameter/aux_/result_of0.hpp>
#include <boost/parameter/aux_/default.hpp>
#include <boost/parameter/aux_/parameter_requirements.hpp>
#include <boost/parameter/aux_/yesno.hpp>
#include <boost/parameter/aux_/is_maybe.hpp>
#include <boost/parameter/config.hpp>
#include <boost/mpl/apply.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/mpl/begin.hpp>
#include <boost/mpl/end.hpp>
#include <boost/mpl/iterator_tags.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/facilities/intercept.hpp>
namespace boost { namespace parameter {
// Forward declaration for aux::arg_list, below.
template<class T> struct keyword;
namespace aux {
// Tag type passed to MPL lambda.
struct lambda_tag;
//
// Structures used to build the tuple of actual arguments. The
// tuple is a nested cons-style list of arg_list specializations
// terminated by an empty_arg_list.
//
// Each specialization of arg_list is derived from its successor in
// the list type. This feature is used along with using
// declarations to build member function overload sets that can
// match against keywords.
//
// MPL sequence support
struct arg_list_tag;
// Terminates arg_list<> and represents an empty list. Since this
// is just the terminating case you might want to look at arg_list
// first, to get a feel for what's really happening here.
struct empty_arg_list
{
empty_arg_list() {}
// Constructor taking BOOST_PARAMETER_MAX_ARITY empty_arg_list
// arguments; this makes initialization
empty_arg_list(
BOOST_PP_ENUM_PARAMS(
BOOST_PARAMETER_MAX_ARITY, void_ BOOST_PP_INTERCEPT
))
{}
// A metafunction class that, given a keyword and a default
// type, returns the appropriate result type for a keyword
// lookup given that default
struct binding
{
template<class KW, class Default, class Reference>
struct apply
{
typedef Default type;
};
};
// Terminator for has_key, indicating that the keyword is unique
template <class KW>
static no_tag has_key(KW*);
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
// The overload set technique doesn't work with these older
// compilers, so they need some explicit handholding.
// A metafunction class that, given a keyword, returns the type
// of the base sublist whose get() function can produce the
// value for that key
struct key_owner
{
template<class KW>
struct apply
{
typedef empty_arg_list type;
};
};
template <class K, class T>
T& get(default_<K,T> x) const
{
return x.value;
}
template <class K, class F>
typename result_of0<F>::type
get(lazy_default<K,F> x) const
{
return x.compute_default();
}
#endif
// If this function is called, it means there is no argument
// in the list that matches the supplied keyword. Just return
// the default value.
template <class K, class Default>
Default& operator[](default_<K, Default> x) const
{
return x.value;
}
// If this function is called, it means there is no argument
// in the list that matches the supplied keyword. Just evaluate
// and return the default value.
template <class K, class F>
typename result_of0<F>::type
operator[](
BOOST_PARAMETER_lazy_default_fallback<K,F> x) const
{
return x.compute_default();
}
// No argument corresponding to ParameterRequirements::key_type
// was found if we match this overload, so unless that parameter
// has a default, we indicate that the actual arguments don't
// match the function's requirements.
template <class ParameterRequirements, class ArgPack>
static typename ParameterRequirements::has_default
satisfies(ParameterRequirements*, ArgPack*);
// MPL sequence support
typedef empty_arg_list type; // convenience
typedef arg_list_tag tag; // For dispatching to sequence intrinsics
};
// Forward declaration for arg_list::operator,
template <class KW, class T>
struct tagged_argument;
template <class T>
struct get_reference
{
typedef typename T::reference type;
};
// A tuple of tagged arguments, terminated with empty_arg_list.
// Every TaggedArg is an instance of tagged_argument<>.
template <class TaggedArg, class Next = empty_arg_list>
struct arg_list : Next
{
typedef arg_list<TaggedArg,Next> self;
typedef typename TaggedArg::key_type key_type;
typedef typename is_maybe<typename TaggedArg::value_type>::type holds_maybe;
typedef typename mpl::eval_if<
holds_maybe
, get_reference<typename TaggedArg::value_type>
, get_reference<TaggedArg>
>::type reference;
typedef typename mpl::if_<
holds_maybe
, reference
, typename TaggedArg::value_type
>::type value_type;
TaggedArg arg; // Stores the argument
// Store the arguments in successive nodes of this list
template< // class A0, class A1, ...
BOOST_PP_ENUM_PARAMS(BOOST_PARAMETER_MAX_ARITY, class A)
>
arg_list( // A0& a0, A1& a1, ...
BOOST_PP_ENUM_BINARY_PARAMS(BOOST_PARAMETER_MAX_ARITY, A, & a)
)
: Next( // a1, a2, ...
BOOST_PP_ENUM_SHIFTED_PARAMS(BOOST_PARAMETER_MAX_ARITY, a)
, void_reference()
)
, arg(a0)
{}
// Create a new list by prepending arg to a copy of tail. Used
// when incrementally building this structure with the comma
// operator.
arg_list(TaggedArg head, Next const& tail)
: Next(tail)
, arg(head)
{}
// A metafunction class that, given a keyword and a default
// type, returns the appropriate result type for a keyword
// lookup given that default
struct binding
{
template <class KW, class Default, class Reference>
struct apply
{
typedef typename mpl::eval_if<
boost::is_same<KW, key_type>
, mpl::if_<Reference, reference, value_type>
, mpl::apply_wrap3<typename Next::binding, KW, Default, Reference>
>::type type;
};
};
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
// Overload for key_type, so the assert below will fire if the
// same keyword is used again
static yes_tag has_key(key_type*);
using Next::has_key;
BOOST_MPL_ASSERT_MSG(
sizeof(Next::has_key((key_type*)0)) == sizeof(no_tag)
, duplicate_keyword, (key_type)
);
#endif
//
// Begin implementation of indexing operators for looking up
// specific arguments by name
//
// Helpers that handle the case when TaggedArg is
// empty<T>.
template <class D>
reference get_default(D const&, mpl::false_) const
{
return arg.value;
}
template <class D>
reference get_default(D const& d, mpl::true_) const
{
return arg.value ? arg.value.get() : arg.value.construct(d.value);
}
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
// These older compilers don't support the overload set creation
// idiom well, so we need to do all the return type calculation
// for the compiler and dispatch through an outer function template
// A metafunction class that, given a keyword, returns the base
// sublist whose get() function can produce the value for that
// key.
struct key_owner
{
template<class KW>
struct apply
{
typedef typename mpl::eval_if<
boost::is_same<KW, key_type>
, mpl::identity<arg_list<TaggedArg,Next> >
, mpl::apply_wrap1<typename Next::key_owner,KW>
>::type type;
};
};
// Outer indexing operators that dispatch to the right node's
// get() function.
template <class KW>
typename mpl::apply_wrap3<binding, KW, void_, mpl::true_>::type
operator[](keyword<KW> const& x) const
{
typename mpl::apply_wrap1<key_owner, KW>::type const& sublist = *this;
return sublist.get(x);
}
template <class KW, class Default>
typename mpl::apply_wrap3<binding, KW, Default&, mpl::true_>::type
operator[](default_<KW, Default> x) const
{
typename mpl::apply_wrap1<key_owner, KW>::type const& sublist = *this;
return sublist.get(x);
}
template <class KW, class F>
typename mpl::apply_wrap3<
binding,KW
, typename result_of0<F>::type
, mpl::true_
>::type
operator[](lazy_default<KW,F> x) const
{
typename mpl::apply_wrap1<key_owner, KW>::type const& sublist = *this;
return sublist.get(x);
}
// These just return the stored value; when empty_arg_list is
// reached, indicating no matching argument was passed, the
// default is returned, or if no default_ or lazy_default was
// passed, compilation fails.
reference get(keyword<key_type> const&) const
{
BOOST_MPL_ASSERT_NOT((holds_maybe));
return arg.value;
}
template <class Default>
reference get(default_<key_type,Default> const& d) const
{
return get_default(d, holds_maybe());
}
template <class Default>
reference get(lazy_default<key_type, Default>) const
{
return arg.value;
}
#else
reference operator[](keyword<key_type> const&) const
{
BOOST_MPL_ASSERT_NOT((holds_maybe));
return arg.value;
}
template <class Default>
reference operator[](default_<key_type, Default> const& d) const
{
return get_default(d, holds_maybe());
}
template <class Default>
reference operator[](lazy_default<key_type, Default>) const
{
return arg.value;
}
// Builds an overload set including operator[]s defined in base
// classes.
using Next::operator[];
//
// End of indexing support
//
//
// For parameter_requirements matching this node's key_type,
// return a bool constant wrapper indicating whether the
// requirements are satisfied by TaggedArg. Used only for
// compile-time computation and never really called, so a
// declaration is enough.
//
template <class HasDefault, class Predicate, class ArgPack>
static typename mpl::apply_wrap2<
typename mpl::lambda<Predicate, lambda_tag>::type
, value_type, ArgPack
>::type
satisfies(
parameter_requirements<key_type,Predicate,HasDefault>*
, ArgPack*
);
// Builds an overload set including satisfies functions defined
// in base classes.
using Next::satisfies;
#endif
// Comma operator to compose argument list without using parameters<>.
// Useful for argument lists with undetermined length.
template <class KW, class T2>
arg_list<tagged_argument<KW, T2>, self>
operator,(tagged_argument<KW,T2> x) const
{
return arg_list<tagged_argument<KW,T2>, self>(x, *this);
}
// MPL sequence support
typedef self type; // Convenience for users
typedef Next tail_type; // For the benefit of iterators
typedef arg_list_tag tag; // For dispatching to sequence intrinsics
};
// MPL sequence support
template <class ArgumentPack>
struct arg_list_iterator
{
typedef mpl::forward_iterator_tag category;
// The incremented iterator
typedef arg_list_iterator<typename ArgumentPack::tail_type> next;
// dereferencing yields the key type
typedef typename ArgumentPack::key_type type;
};
template <>
struct arg_list_iterator<empty_arg_list> {};
}} // namespace parameter::aux
// MPL sequence support
namespace mpl
{
template <>
struct begin_impl<parameter::aux::arg_list_tag>
{
template <class S>
struct apply
{
typedef parameter::aux::arg_list_iterator<S> type;
};
};
template <>
struct end_impl<parameter::aux::arg_list_tag>
{
template <class>
struct apply
{
typedef parameter::aux::arg_list_iterator<parameter::aux::empty_arg_list> type;
};
};
}
} // namespace boost
#endif // ARG_LIST_050329_HPP
|