1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef UTIL_BTREE_BTREE_TEST_H__
#define UTIL_BTREE_BTREE_TEST_H__
#include <stdio.h>
#include <algorithm>
#include <functional>
#include <type_traits>
#include <iosfwd>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gtest/gtest.h"
#include "gflags/gflags.h"
#include "btree_container.h"
DECLARE_int32(test_values);
DECLARE_int32(benchmark_values);
namespace std {
// Provide operator<< support for std::pair<T, U>.
template <typename T, typename U>
ostream& operator<<(ostream &os, const std::pair<T, U> &p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
// Provide pair equality testing that works as long as x.first is comparable to
// y.first and x.second is comparable to y.second. Needed in the test for
// comparing std::pair<T, U> to std::pair<const T, U>.
template <typename T, typename U, typename V, typename W>
bool operator==(const std::pair<T, U> &x, const std::pair<V, W> &y) {
return x.first == y.first && x.second == y.second;
}
// Partial specialization of remove_const that propagates the removal through
// std::pair.
template <typename T, typename U>
struct remove_const<pair<T, U> > {
typedef pair<typename remove_const<T>::type,
typename remove_const<U>::type> type;
};
} // namespace std
namespace btree {
// Select the first member of a pair.
template <class _Pair>
struct select1st : public std::unary_function<_Pair, typename _Pair::first_type> {
const typename _Pair::first_type& operator()(const _Pair& __x) const {
return __x.first;
}
};
// Utility class to provide an accessor for a key given a value. The default
// behavior is to treat the value as a pair and return the first element.
template <typename K, typename V>
struct KeyOfValue {
typedef select1st<V> type;
};
template <typename T>
struct identity {
inline const T& operator()(const T& t) const { return t; }
};
// Partial specialization of KeyOfValue class for when the key and value are
// the same type such as in set<> and btree_set<>.
template <typename K>
struct KeyOfValue<K, K> {
typedef identity<K> type;
};
// Counts the number of occurances of "c" in a buffer.
inline ptrdiff_t strcount(const char* buf_begin, const char* buf_end, char c) {
if (buf_begin == NULL)
return 0;
if (buf_end <= buf_begin)
return 0;
ptrdiff_t num = 0;
for (const char* bp = buf_begin; bp != buf_end; bp++) {
if (*bp == c)
num++;
}
return num;
}
// for when the string is not null-terminated.
inline ptrdiff_t strcount(const char* buf, size_t len, char c) {
return strcount(buf, buf + len, c);
}
inline ptrdiff_t strcount(const std::string& buf, char c) {
return strcount(buf.c_str(), buf.size(), c);
}
// The base class for a sorted associative container checker. TreeType is the
// container type to check and CheckerType is the container type to check
// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
// CheckerType is expected to be {set,map,multiset,multimap}.
template <typename TreeType, typename CheckerType>
class base_checker {
typedef base_checker<TreeType, CheckerType> self_type;
public:
typedef typename TreeType::key_type key_type;
typedef typename TreeType::value_type value_type;
typedef typename TreeType::key_compare key_compare;
typedef typename TreeType::pointer pointer;
typedef typename TreeType::const_pointer const_pointer;
typedef typename TreeType::reference reference;
typedef typename TreeType::const_reference const_reference;
typedef typename TreeType::size_type size_type;
typedef typename TreeType::difference_type difference_type;
typedef typename TreeType::iterator iterator;
typedef typename TreeType::const_iterator const_iterator;
typedef typename TreeType::reverse_iterator reverse_iterator;
typedef typename TreeType::const_reverse_iterator const_reverse_iterator;
public:
// Default constructor.
base_checker()
: const_tree_(tree_) {
}
// Copy constructor.
base_checker(const self_type &x)
: tree_(x.tree_),
const_tree_(tree_),
checker_(x.checker_) {
}
// Range constructor.
template <typename InputIterator>
base_checker(InputIterator b, InputIterator e)
: tree_(b, e),
const_tree_(tree_),
checker_(b, e) {
}
// Iterator routines.
iterator begin() { return tree_.begin(); }
const_iterator begin() const { return tree_.begin(); }
iterator end() { return tree_.end(); }
const_iterator end() const { return tree_.end(); }
reverse_iterator rbegin() { return tree_.rbegin(); }
const_reverse_iterator rbegin() const { return tree_.rbegin(); }
reverse_iterator rend() { return tree_.rend(); }
const_reverse_iterator rend() const { return tree_.rend(); }
// Helper routines.
template <typename IterType, typename CheckerIterType>
IterType iter_check(
IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.end()) {
EXPECT_EQ(checker_iter, checker_.end());
} else {
EXPECT_EQ(*tree_iter, *checker_iter);
}
return tree_iter;
}
template <typename IterType, typename CheckerIterType>
IterType riter_check(
IterType tree_iter, CheckerIterType checker_iter) const {
if (tree_iter == tree_.rend()) {
EXPECT_EQ(checker_iter, checker_.rend());
} else {
EXPECT_EQ(*tree_iter, *checker_iter);
}
return tree_iter;
}
void value_check(const value_type &x) {
typename KeyOfValue<typename TreeType::key_type,
typename TreeType::value_type>::type key_of_value;
const key_type &key = key_of_value(x);
EXPECT_EQ(*find(key), x);
lower_bound(key);
upper_bound(key);
equal_range(key);
count(key);
}
void erase_check(const key_type &key) {
EXPECT_TRUE(tree_.find(key) == const_tree_.end());
EXPECT_TRUE(const_tree_.find(key) == tree_.end());
EXPECT_TRUE(tree_.equal_range(key).first ==
const_tree_.equal_range(key).second);
}
// Lookup routines.
iterator lower_bound(const key_type &key) {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
const_iterator lower_bound(const key_type &key) const {
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
}
iterator upper_bound(const key_type &key) {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
const_iterator upper_bound(const key_type &key) const {
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
}
std::pair<iterator,iterator> equal_range(const key_type &key) {
std::pair<typename CheckerType::iterator,
typename CheckerType::iterator> checker_res =
checker_.equal_range(key);
std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
std::pair<typename CheckerType::const_iterator,
typename CheckerType::const_iterator> checker_res =
checker_.equal_range(key);
std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
iter_check(tree_res.first, checker_res.first);
iter_check(tree_res.second, checker_res.second);
return tree_res;
}
iterator find(const key_type &key) {
return iter_check(tree_.find(key), checker_.find(key));
}
const_iterator find(const key_type &key) const {
return iter_check(tree_.find(key), checker_.find(key));
}
size_type count(const key_type &key) const {
size_type res = checker_.count(key);
EXPECT_EQ(res, tree_.count(key));
return res;
}
// Assignment operator.
self_type& operator=(const self_type &x) {
tree_ = x.tree_;
checker_ = x.checker_;
return *this;
}
// Deletion routines.
int erase(const key_type &key) {
int size = tree_.size();
int res = checker_.erase(key);
EXPECT_EQ(res, tree_.count(key));
EXPECT_EQ(res, tree_.erase(key));
EXPECT_EQ(tree_.count(key), 0);
EXPECT_EQ(tree_.size(), size - res);
erase_check(key);
return res;
}
iterator erase(iterator iter) {
key_type key = iter.key();
int size = tree_.size();
int count = tree_.count(key);
typename CheckerType::iterator checker_iter = checker_.find(key);
for (iterator tmp(tree_.find(key)); tmp != iter; ++tmp) {
++checker_iter;
}
typename CheckerType::iterator checker_next = checker_iter;
++checker_next;
checker_.erase(checker_iter);
iter = tree_.erase(iter);
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - 1);
EXPECT_EQ(tree_.count(key), count - 1);
if (count == 1) {
erase_check(key);
}
return iter_check(iter, checker_next);
}
void erase(iterator begin, iterator end) {
int size = tree_.size();
int count = distance(begin, end);
typename CheckerType::iterator checker_begin = checker_.find(begin.key());
for (iterator tmp(tree_.find(begin.key())); tmp != begin; ++tmp) {
++checker_begin;
}
typename CheckerType::iterator checker_end =
end == tree_.end() ? checker_.end() : checker_.find(end.key());
if (end != tree_.end()) {
for (iterator tmp(tree_.find(end.key())); tmp != end; ++tmp) {
++checker_end;
}
}
checker_.erase(checker_begin, checker_end);
tree_.erase(begin, end);
EXPECT_EQ(tree_.size(), checker_.size());
EXPECT_EQ(tree_.size(), size - count);
}
// Utility routines.
void clear() {
tree_.clear();
checker_.clear();
}
void swap(self_type &x) {
tree_.swap(x.tree_);
checker_.swap(x.checker_);
}
void verify() const {
tree_.verify();
EXPECT_EQ(tree_.size(), checker_.size());
// Move through the forward iterators using increment.
typename CheckerType::const_iterator
checker_iter(checker_.begin());
const_iterator tree_iter(tree_.begin());
for (; tree_iter != tree_.end();
++tree_iter, ++checker_iter) {
EXPECT_EQ(*tree_iter, *checker_iter);
}
// Move through the forward iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
iter_check(tree_iter, checker_iter);
--tree_iter;
--checker_iter;
}
EXPECT_TRUE(tree_iter == tree_.begin());
EXPECT_TRUE(checker_iter == checker_.begin());
// Move through the reverse iterators using increment.
typename CheckerType::const_reverse_iterator
checker_riter(checker_.rbegin());
const_reverse_iterator tree_riter(tree_.rbegin());
for (; tree_riter != tree_.rend();
++tree_riter, ++checker_riter) {
EXPECT_EQ(*tree_riter, *checker_riter);
}
// Move through the reverse iterators using decrement.
for (int n = tree_.size() - 1; n >= 0; --n) {
riter_check(tree_riter, checker_riter);
--tree_riter;
--checker_riter;
}
EXPECT_EQ(tree_riter, tree_.rbegin());
EXPECT_EQ(checker_riter, checker_.rbegin());
}
// Access to the underlying btree.
const TreeType& tree() const { return tree_; }
// Size routines.
size_type size() const {
EXPECT_EQ(tree_.size(), checker_.size());
return tree_.size();
}
size_type max_size() const { return tree_.max_size(); }
bool empty() const {
EXPECT_EQ(tree_.empty(), checker_.empty());
return tree_.empty();
}
size_type height() const { return tree_.height(); }
size_type internal_nodes() const { return tree_.internal_nodes(); }
size_type leaf_nodes() const { return tree_.leaf_nodes(); }
size_type nodes() const { return tree_.nodes(); }
size_type bytes_used() const { return tree_.bytes_used(); }
double fullness() const { return tree_.fullness(); }
double overhead() const { return tree_.overhead(); }
protected:
TreeType tree_;
const TreeType &const_tree_;
CheckerType checker_;
};
// A checker for unique sorted associative containers. TreeType is expected to
// be btree_{set,map} and CheckerType is expected to be {set,map}.
template <typename TreeType, typename CheckerType>
class unique_checker : public base_checker<TreeType, CheckerType> {
typedef base_checker<TreeType, CheckerType> super_type;
typedef unique_checker<TreeType, CheckerType> self_type;
public:
typedef typename super_type::iterator iterator;
typedef typename super_type::value_type value_type;
public:
// Default constructor.
unique_checker()
: super_type() {
}
// Copy constructor.
unique_checker(const self_type &x)
: super_type(x) {
}
// Range constructor.
template <class InputIterator>
unique_checker(InputIterator b, InputIterator e)
: super_type(b, e) {
}
// Insertion routines.
std::pair<iterator,bool> insert(const value_type &x) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator,bool> checker_res =
this->checker_.insert(x);
std::pair<iterator,bool> tree_res = this->tree_.insert(x);
EXPECT_EQ(*tree_res.first, *checker_res.first);
EXPECT_EQ(tree_res.second, checker_res.second);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + tree_res.second);
return tree_res;
}
iterator insert(iterator position, const value_type &x) {
int size = this->tree_.size();
std::pair<typename CheckerType::iterator,bool> checker_res =
this->checker_.insert(x);
iterator tree_res = this->tree_.insert(position, x);
EXPECT_EQ(*tree_res, *checker_res.first);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + checker_res.second);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
// A checker for multiple sorted associative containers. TreeType is expected
// to be btree_{multiset,multimap} and CheckerType is expected to be
// {multiset,multimap}.
template <typename TreeType, typename CheckerType>
class multi_checker : public base_checker<TreeType, CheckerType> {
typedef base_checker<TreeType, CheckerType> super_type;
typedef multi_checker<TreeType, CheckerType> self_type;
public:
typedef typename super_type::iterator iterator;
typedef typename super_type::value_type value_type;
public:
// Default constructor.
multi_checker()
: super_type() {
}
// Copy constructor.
multi_checker(const self_type &x)
: super_type(x) {
}
// Range constructor.
template <class InputIterator>
multi_checker(InputIterator b, InputIterator e)
: super_type(b, e) {
}
// Insertion routines.
iterator insert(const value_type &x) {
int size = this->tree_.size();
typename CheckerType::iterator checker_res = this->checker_.insert(x);
iterator tree_res = this->tree_.insert(x);
EXPECT_EQ(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
iterator insert(iterator position, const value_type &x) {
int size = this->tree_.size();
typename CheckerType::iterator checker_res = this->checker_.insert(x);
iterator tree_res = this->tree_.insert(position, x);
EXPECT_EQ(*tree_res, *checker_res);
EXPECT_EQ(this->tree_.size(), this->checker_.size());
EXPECT_EQ(this->tree_.size(), size + 1);
return tree_res;
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert(*b);
}
}
};
char* GenerateDigits(char buf[16], int val, int maxval) {
EXPECT_LE(val, maxval);
int p = 15;
buf[p--] = 0;
while (maxval > 0) {
buf[p--] = '0' + (val % 10);
val /= 10;
maxval /= 10;
}
return buf + p + 1;
}
template <typename K>
struct Generator {
int maxval;
Generator(int m)
: maxval(m) {
}
K operator()(int i) const {
EXPECT_LE(i, maxval);
return i;
}
};
template <>
struct Generator<std::string> {
int maxval;
Generator(int m)
: maxval(m) {
}
std::string operator()(int i) const {
char buf[16];
return GenerateDigits(buf, i, maxval);
}
};
template <typename T, typename U>
struct Generator<std::pair<T, U> > {
Generator<typename std::remove_const<T>::type> tgen;
Generator<typename std::remove_const<U>::type> ugen;
Generator(int m)
: tgen(m),
ugen(m) {
}
std::pair<T, U> operator()(int i) const {
return std::make_pair(tgen(i), ugen(i));
}
};
// Generate values for our tests and benchmarks. Value range is [0, maxval].
const std::vector<int>& GenerateNumbers(int n, int maxval) {
static std::vector<int> values;
static std::set<int> unique_values;
if (values.size() < n) {
for (int i = values.size(); i < n; i++) {
int value;
do {
value = rand() % (maxval + 1);
} while (unique_values.find(value) != unique_values.end());
values.push_back(value);
unique_values.insert(value);
}
}
return values;
}
// Generates values in the range
// [0, 4 * min(FLAGS_benchmark_values, FLAGS_test_values)]
template <typename V>
std::vector<V> GenerateValues(int n) {
int two_times_max = 2 * std::max(FLAGS_benchmark_values, FLAGS_test_values);
int four_times_max = 2 * two_times_max;
EXPECT_LE(n, two_times_max);
const std::vector<int> &nums = GenerateNumbers(n, four_times_max);
Generator<V> gen(four_times_max);
std::vector<V> vec;
for (int i = 0; i < n; i++) {
vec.push_back(gen(nums[i]));
}
return vec;
}
template <typename T, typename V>
void DoTest(const char *name, T *b, const std::vector<V> &values) {
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
T &mutable_b = *b;
const T &const_b = *b;
// Test insert.
for (int i = 0; i < values.size(); ++i) {
mutable_b.insert(values[i]);
mutable_b.value_check(values[i]);
}
assert(mutable_b.size() == values.size());
const_b.verify();
printf(" %s fullness=%0.2f overhead=%0.2f bytes-per-value=%0.2f\n",
name, const_b.fullness(), const_b.overhead(),
double(const_b.bytes_used()) / const_b.size());
// Test copy constructor.
T b_copy(const_b);
EXPECT_EQ(b_copy.size(), const_b.size());
EXPECT_LE(b_copy.height(), const_b.height());
EXPECT_LE(b_copy.internal_nodes(), const_b.internal_nodes());
EXPECT_LE(b_copy.leaf_nodes(), const_b.leaf_nodes());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_copy.find(key_of_value(values[i])), values[i]);
}
// Test range constructor.
T b_range(const_b.begin(), const_b.end());
EXPECT_EQ(b_range.size(), const_b.size());
EXPECT_LE(b_range.height(), const_b.height());
EXPECT_LE(b_range.internal_nodes(), const_b.internal_nodes());
EXPECT_LE(b_range.leaf_nodes(), const_b.leaf_nodes());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test range insertion for values that already exist.
b_range.insert(b_copy.begin(), b_copy.end());
b_range.verify();
// Test range insertion for new values.
b_range.clear();
b_range.insert(b_copy.begin(), b_copy.end());
EXPECT_EQ(b_range.size(), b_copy.size());
EXPECT_EQ(b_range.height(), b_copy.height());
EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
}
// Test assignment to self. Nothing should change.
b_range.operator=(b_range);
EXPECT_EQ(b_range.size(), b_copy.size());
EXPECT_EQ(b_range.height(), b_copy.height());
EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
// Test assignment of new values.
b_range.clear();
b_range = b_copy;
EXPECT_EQ(b_range.size(), b_copy.size());
EXPECT_EQ(b_range.height(), b_copy.height());
EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
// Test swap.
b_range.clear();
b_range.swap(b_copy);
EXPECT_EQ(b_copy.size(), 0);
EXPECT_EQ(b_range.size(), const_b.size());
for (int i = 0; i < values.size(); ++i) {
EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
}
b_range.swap(b_copy);
// Test erase via values.
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(key_of_value(values[i]));
// Erasing a non-existent key should have no effect.
EXPECT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
}
const_b.verify();
EXPECT_EQ(const_b.internal_nodes(), 0);
EXPECT_EQ(const_b.leaf_nodes(), 0);
EXPECT_EQ(const_b.size(), 0);
// Test erase via iterators.
mutable_b = b_copy;
for (int i = 0; i < values.size(); ++i) {
mutable_b.erase(mutable_b.find(key_of_value(values[i])));
}
const_b.verify();
EXPECT_EQ(const_b.internal_nodes(), 0);
EXPECT_EQ(const_b.leaf_nodes(), 0);
EXPECT_EQ(const_b.size(), 0);
// Test insert with hint.
for (int i = 0; i < values.size(); i++) {
mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
}
const_b.verify();
// Test dumping of the btree to an ostream. There should be 1 line for each
// value.
std::stringstream strm;
strm << mutable_b.tree();
EXPECT_EQ(mutable_b.size(), strcount(strm.str(), '\n'));
// Test range erase.
mutable_b.erase(mutable_b.begin(), mutable_b.end());
EXPECT_EQ(mutable_b.size(), 0);
const_b.verify();
// First half.
mutable_b = b_copy;
typename T::iterator mutable_iter_end = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_b.begin(), mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
const_b.verify();
// Second half.
mutable_b = b_copy;
typename T::iterator mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
mutable_b.erase(mutable_iter_begin, mutable_b.end());
EXPECT_EQ(mutable_b.size(), values.size() / 2);
const_b.verify();
// Second quarter.
mutable_b = b_copy;
mutable_iter_begin = mutable_b.begin();
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
mutable_iter_end = mutable_iter_begin;
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
mutable_b.erase(mutable_iter_begin, mutable_iter_end);
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
const_b.verify();
mutable_b.clear();
}
template <typename T>
void ConstTest() {
typedef typename T::value_type value_type;
typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;
T mutable_b;
const T &const_b = mutable_b;
// Insert a single value into the container and test looking it up.
value_type value = Generator<value_type>(2)(2);
mutable_b.insert(value);
EXPECT_TRUE(mutable_b.find(key_of_value(value)) != const_b.end());
EXPECT_TRUE(const_b.find(key_of_value(value)) != mutable_b.end());
EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
EXPECT_TRUE(const_b.upper_bound(key_of_value(value)) == const_b.end());
EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);
// We can only create a non-const iterator from a non-const container.
typename T::iterator mutable_iter(mutable_b.begin());
EXPECT_TRUE(mutable_iter == const_b.begin());
EXPECT_TRUE(mutable_iter != const_b.end());
EXPECT_TRUE(const_b.begin() == mutable_iter);
EXPECT_TRUE(const_b.end() != mutable_iter);
typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
EXPECT_TRUE(mutable_riter == const_b.rbegin());
EXPECT_TRUE(mutable_riter != const_b.rend());
EXPECT_TRUE(const_b.rbegin() == mutable_riter);
EXPECT_TRUE(const_b.rend() != mutable_riter);
// We can create a const iterator from a non-const iterator.
typename T::const_iterator const_iter(mutable_iter);
EXPECT_TRUE(const_iter == mutable_b.begin());
EXPECT_TRUE(const_iter != mutable_b.end());
EXPECT_TRUE(mutable_b.begin() == const_iter);
EXPECT_TRUE(mutable_b.end() != const_iter);
typename T::const_reverse_iterator const_riter(mutable_riter);
EXPECT_EQ(const_riter, mutable_b.rbegin());
EXPECT_TRUE(const_riter != mutable_b.rend());
EXPECT_EQ(mutable_b.rbegin(), const_riter);
EXPECT_TRUE(mutable_b.rend() != const_riter);
// Make sure various methods can be invoked on a const container.
const_b.verify();
EXPECT_FALSE(const_b.empty());
EXPECT_EQ(const_b.size(), 1);
EXPECT_GT(const_b.max_size(), 0);
EXPECT_EQ(const_b.height(), 1);
EXPECT_EQ(const_b.count(key_of_value(value)), 1);
EXPECT_EQ(const_b.internal_nodes(), 0);
EXPECT_EQ(const_b.leaf_nodes(), 1);
EXPECT_EQ(const_b.nodes(), 1);
EXPECT_GT(const_b.bytes_used(), 0);
EXPECT_GT(const_b.fullness(), 0);
EXPECT_GT(const_b.overhead(), 0);
}
template <typename T, typename C>
void BtreeTest() {
ConstTest<T>();
typedef typename std::remove_const<typename T::value_type>::type V;
std::vector<V> random_values = GenerateValues<V>(FLAGS_test_values);
unique_checker<T, C> container;
// Test key insertion/deletion in sorted order.
std::vector<V> sorted_values(random_values);
sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test key insertion/deletion in reverse sorted order.
reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test key insertion/deletion in random order.
DoTest("random: ", &container, random_values);
}
template <typename T, typename C>
void BtreeMultiTest() {
ConstTest<T>();
typedef typename std::remove_const<typename T::value_type>::type V;
const std::vector<V>& random_values = GenerateValues<V>(FLAGS_test_values);
multi_checker<T, C> container;
// Test keys in sorted order.
std::vector<V> sorted_values(random_values);
sort(sorted_values.begin(), sorted_values.end());
DoTest("sorted: ", &container, sorted_values);
// Test keys in reverse sorted order.
reverse(sorted_values.begin(), sorted_values.end());
DoTest("rsorted: ", &container, sorted_values);
// Test keys in random order.
DoTest("random: ", &container, random_values);
// Test keys in random order w/ duplicates.
std::vector<V> duplicate_values(random_values);
duplicate_values.insert(
duplicate_values.end(), random_values.begin(), random_values.end());
DoTest("duplicates:", &container, duplicate_values);
// Test all identical keys.
std::vector<V> identical_values(100);
fill(identical_values.begin(), identical_values.end(), Generator<V>(2)(2));
DoTest("identical: ", &container, identical_values);
}
template <typename T, typename Alloc = std::allocator<T> >
class TestAllocator : public Alloc {
public:
typedef typename Alloc::pointer pointer;
typedef typename Alloc::size_type size_type;
TestAllocator() : bytes_used_(NULL) { }
TestAllocator(int64_t *bytes_used) : bytes_used_(bytes_used) { }
// Constructor used for rebinding
template <class U>
TestAllocator(const TestAllocator<U>& x)
: Alloc(x),
bytes_used_(x.bytes_used()) {
}
pointer allocate(size_type n, std::allocator<void>::const_pointer hint = 0) {
EXPECT_TRUE(bytes_used_ != NULL);
*bytes_used_ += n * sizeof(T);
return Alloc::allocate(n, hint);
}
void deallocate(pointer p, size_type n) {
Alloc::deallocate(p, n);
EXPECT_TRUE(bytes_used_ != NULL);
*bytes_used_ -= n * sizeof(T);
}
// Rebind allows an allocator<T> to be used for a different type
template <class U> struct rebind {
typedef TestAllocator<U, typename Alloc::template rebind<U>::other> other;
};
int64_t* bytes_used() const { return bytes_used_; }
private:
int64_t *bytes_used_;
};
template <typename T>
void BtreeAllocatorTest() {
typedef typename T::value_type value_type;
int64_t alloc1 = 0;
int64_t alloc2 = 0;
T b1(typename T::key_compare(), &alloc1);
T b2(typename T::key_compare(), &alloc2);
// This should swap the allocators!
swap(b1, b2);
for (int i = 0; i < 1000; i++) {
b1.insert(Generator<value_type>(1000)(i));
}
// We should have allocated out of alloc2!
EXPECT_LE(b1.bytes_used(), alloc2 + sizeof(b1));
EXPECT_GT(alloc2, alloc1);
}
template <typename T>
void BtreeMapTest() {
typedef typename T::value_type value_type;
typedef typename T::mapped_type mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void) m;
T b;
// Verify we can insert using operator[].
for (int i = 0; i < 1000; i++) {
value_type v = Generator<value_type>(1000)(i);
b[v.first] = v.second;
}
EXPECT_EQ(b.size(), 1000);
// Test whether we can use the "->" operator on iterators and
// reverse_iterators. This stresses the btree_map_params::pair_pointer
// mechanism.
EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
}
template <typename T>
void BtreeMultiMapTest() {
typedef typename T::mapped_type mapped_type;
mapped_type m = Generator<mapped_type>(0)(0);
(void) m;
}
} // namespace btree
#endif // UTIL_BTREE_BTREE_TEST_H__
|