1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A safe_btree<> wraps around a btree<> and removes the caveat that insertion
// and deletion invalidate iterators. A safe_btree<> maintains a generation
// number that is incremented on every mutation. A safe_btree<>::iterator keeps
// a pointer to the safe_btree<> it came from, the generation of the tree when
// it was last validated and the key the underlying btree<>::iterator points
// to. If an iterator is accessed and its generation differs from the tree
// generation it is revalidated.
//
// References and pointers returned by safe_btree iterators are not safe.
//
// See the incorrect usage examples mentioned in safe_btree_set.h and
// safe_btree_map.h.
#ifndef UTIL_BTREE_SAFE_BTREE_H__
#define UTIL_BTREE_SAFE_BTREE_H__
#include <stddef.h>
#include <iosfwd>
#include <utility>
#include "btree.h"
namespace btree {
template <typename Tree, typename Iterator>
class safe_btree_iterator {
public:
typedef typename Iterator::key_type key_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::size_type size_type;
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
typedef typename Iterator::const_pointer const_pointer;
typedef typename Iterator::const_reference const_reference;
typedef typename Iterator::iterator_category iterator_category;
typedef typename Tree::iterator iterator;
typedef typename Tree::const_iterator const_iterator;
typedef safe_btree_iterator<Tree, Iterator> self_type;
void update() const {
if (iter_ != tree_->internal_btree()->end()) {
// A positive generation indicates a valid key.
generation_ = tree_->generation();
key_ = iter_.key();
} else {
// Use a negative generation to indicate iter_ points to end().
generation_ = -tree_->generation();
}
}
public:
safe_btree_iterator()
: generation_(0),
key_(),
iter_(),
tree_(NULL) {
}
safe_btree_iterator(const iterator &x)
: generation_(x.generation()),
key_(x.key()),
iter_(x.iter()),
tree_(x.tree()) {
}
safe_btree_iterator(Tree *tree, const Iterator &iter)
: generation_(),
key_(),
iter_(iter),
tree_(tree) {
update();
}
Tree* tree() const { return tree_; }
int64_t generation() const { return generation_; }
Iterator* mutable_iter() const {
if (generation_ != tree_->generation()) {
if (generation_ > 0) {
// This does the wrong thing for a multi{set,map}. If my iter was
// pointing to the 2nd of 2 values with the same key, then this will
// reset it to point to the first. This is why we don't provide a
// safe_btree_multi{set,map}.
iter_ = tree_->internal_btree()->lower_bound(key_);
update();
} else if (-generation_ != tree_->generation()) {
iter_ = tree_->internal_btree()->end();
generation_ = -tree_->generation();
}
}
return &iter_;
}
const Iterator& iter() const {
return *mutable_iter();
}
// Equality/inequality operators.
bool operator==(const const_iterator &x) const {
return iter() == x.iter();
}
bool operator!=(const const_iterator &x) const {
return iter() != x.iter();
}
// Accessors for the key/value the iterator is pointing at.
const key_type& key() const {
return key_;
}
// This reference value is potentially invalidated by any non-const
// method on the tree; it is NOT safe.
reference operator*() const {
assert(generation_ > 0);
return iter().operator*();
}
// This pointer value is potentially invalidated by any non-const
// method on the tree; it is NOT safe.
pointer operator->() const {
assert(generation_ > 0);
return iter().operator->();
}
// Increment/decrement operators.
self_type& operator++() {
++(*mutable_iter());
update();
return *this;
}
self_type& operator--() {
--(*mutable_iter());
update();
return *this;
}
self_type operator++(int) {
self_type tmp = *this;
++*this;
return tmp;
}
self_type operator--(int) {
self_type tmp = *this;
--*this;
return tmp;
}
private:
// The generation of the tree when "iter" was updated.
mutable int64_t generation_;
// The key the iterator points to.
mutable key_type key_;
// The underlying iterator.
mutable Iterator iter_;
// The tree the iterator is associated with.
Tree *tree_;
};
template <typename Params>
class safe_btree {
typedef safe_btree<Params> self_type;
typedef btree<Params> btree_type;
typedef typename btree_type::iterator tree_iterator;
typedef typename btree_type::const_iterator tree_const_iterator;
public:
typedef typename btree_type::params_type params_type;
typedef typename btree_type::key_type key_type;
typedef typename btree_type::data_type data_type;
typedef typename btree_type::mapped_type mapped_type;
typedef typename btree_type::value_type value_type;
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
typedef typename btree_type::pointer pointer;
typedef typename btree_type::const_pointer const_pointer;
typedef typename btree_type::reference reference;
typedef typename btree_type::const_reference const_reference;
typedef typename btree_type::size_type size_type;
typedef typename btree_type::difference_type difference_type;
typedef safe_btree_iterator<self_type, tree_iterator> iterator;
typedef safe_btree_iterator<
const self_type, tree_const_iterator> const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
public:
// Default constructor.
safe_btree(const key_compare &comp, const allocator_type &alloc)
: tree_(comp, alloc),
generation_(1) {
}
// Copy constructor.
safe_btree(const self_type &x)
: tree_(x.tree_),
generation_(1) {
}
safe_btree(self_type &&x) noexcept
: tree_(std::move(x.tree_)),
generation_(x.generation_) {
}
iterator begin() {
return iterator(this, tree_.begin());
}
const_iterator begin() const {
return const_iterator(this, tree_.begin());
}
iterator end() {
return iterator(this, tree_.end());
}
const_iterator end() const {
return const_iterator(this, tree_.end());
}
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Lookup routines.
iterator lower_bound(const key_type &key) {
return iterator(this, tree_.lower_bound(key));
}
const_iterator lower_bound(const key_type &key) const {
return const_iterator(this, tree_.lower_bound(key));
}
iterator upper_bound(const key_type &key) {
return iterator(this, tree_.upper_bound(key));
}
const_iterator upper_bound(const key_type &key) const {
return const_iterator(this, tree_.upper_bound(key));
}
std::pair<iterator, iterator> equal_range(const key_type &key) {
std::pair<tree_iterator, tree_iterator> p = tree_.equal_range(key);
return std::make_pair(iterator(this, p.first),
iterator(this, p.second));
}
std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
std::pair<tree_const_iterator, tree_const_iterator> p = tree_.equal_range(key);
return std::make_pair(const_iterator(this, p.first),
const_iterator(this, p.second));
}
iterator find_unique(const key_type &key) {
return iterator(this, tree_.find_unique(key));
}
const_iterator find_unique(const key_type &key) const {
return const_iterator(this, tree_.find_unique(key));
}
iterator find_multi(const key_type &key) {
return iterator(this, tree_.find_multi(key));
}
const_iterator find_multi(const key_type &key) const {
return const_iterator(this, tree_.find_multi(key));
}
size_type count_unique(const key_type &key) const {
return tree_.count_unique(key);
}
size_type count_multi(const key_type &key) const {
return tree_.count_multi(key);
}
// Insertion routines.
std::pair<iterator, bool> insert_unique(const key_type &key, value_type &&value) {
std::pair<tree_iterator, bool> p = tree_.insert_unique(key, std::move(value));
generation_ += p.second;
return std::make_pair(iterator(this, p.first), p.second);
}
std::pair<iterator, bool> insert_unique(const value_type &v) {
std::pair<tree_iterator, bool> p = tree_.insert_unique(v);
generation_ += p.second;
return std::make_pair(iterator(this, p.first), p.second);
}
std::pair<iterator, bool> insert_unique(value_type &&v) {
std::pair<tree_iterator, bool> p = tree_.insert_unique(std::move(v));
generation_ += p.second;
return std::make_pair(iterator(this, p.first), p.second);
}
iterator insert_unique(iterator position, const value_type &v) {
tree_iterator tree_pos = position.iter();
++generation_;
return iterator(this, tree_.insert_unique(tree_pos, v));
}
template <typename InputIterator>
void insert_unique(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_unique(*b);
}
}
iterator insert_multi(const value_type &v) {
++generation_;
return iterator(this, tree_.insert_multi(v));
}
iterator insert_multi(value_type &&v) {
++generation_;
return iterator(this, tree_.insert_multi(std::move(v)));
}
iterator insert_multi(iterator position, value_type &&v) {
tree_iterator tree_pos = position.iter();
++generation_;
return iterator(this, tree_.insert_multi(tree_pos, std::move(v)));
}
iterator insert_multi(iterator position, const value_type &v) {
tree_iterator tree_pos = position.iter();
++generation_;
return iterator(this, tree_.insert_multi(tree_pos, v));
}
template <typename InputIterator>
void insert_multi(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_multi(*b);
}
}
self_type& operator=(const self_type &x) {
if (&x == this) {
// Don't copy onto ourselves.
return *this;
}
++generation_;
tree_ = x.tree_;
return *this;
}
self_type& operator=(self_type&& x) noexcept {
tree_ = std::move(x.tree_);
generation_ = x.generation_;
x.generation_ = -1;
return *this;
}
// Deletion routines.
void erase(const iterator &begin, const iterator &end) {
tree_.erase(begin.iter(), end.iter());
++generation_;
}
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
iterator erase(iterator iter) {
tree_iterator res = tree_.erase(iter.iter());
++generation_;
return iterator(this, res);
}
int erase_unique(const key_type &key) {
int res = tree_.erase_unique(key);
generation_ += res;
return res;
}
int erase_multi(const key_type &key) {
int res = tree_.erase_multi(key);
generation_ += res;
return res;
}
// Access to the underlying btree.
btree_type* internal_btree() { return &tree_; }
const btree_type* internal_btree() const { return &tree_; }
// Utility routines.
void clear() {
++generation_;
tree_.clear();
}
void swap(self_type &x) {
++generation_;
++x.generation_;
tree_.swap(x.tree_);
}
void dump(std::ostream &os) const {
tree_.dump(os);
}
void verify() const {
tree_.verify();
}
int64_t generation() const {
return generation_;
}
key_compare key_comp() const { return tree_.key_comp(); }
// Size routines.
size_type size() const { return tree_.size(); }
size_type max_size() const { return tree_.max_size(); }
bool empty() const { return tree_.empty(); }
size_type height() const { return tree_.height(); }
size_type internal_nodes() const { return tree_.internal_nodes(); }
size_type leaf_nodes() const { return tree_.leaf_nodes(); }
size_type nodes() const { return tree_.nodes(); }
size_type bytes_used() const { return tree_.bytes_used(); }
static double average_bytes_per_value() {
return btree_type::average_bytes_per_value();
}
double fullness() const { return tree_.fullness(); }
double overhead() const { return tree_.overhead(); }
private:
btree_type tree_;
int64_t generation_;
};
} // namespace btree
#endif // UTIL_BTREE_SAFE_BTREE_H__
|