1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
#pragma once
#include <algorithm>
#include <condition_variable>
#include <functional>
#include <future>
#include <mutex>
#include <queue>
#include <random>
#include <thread>
#include <type_traits>
#include <vector>
#include "hooks.hpp"
#define CALL_HOOK_WORKER(HOOK) \
do \
{ \
if (pool->hooks) \
{ \
pool->hooks->HOOK(); \
} \
} while (0)
#define CALL_HOOK_POOL(HOOK) \
do \
{ \
if (hooks) \
{ \
hooks->HOOK(); \
} \
} while (0)
namespace ThreadPool
{
/*! \brief ThreadPool implement a multiple queues/multiple workers threadpool.
*
* When created, the pool will start the workers(threads) immediatly. The
* threads will only terminate when the pool is destroyed.
*
* This class implements a one queue per worker strategy to dispatch work.
*/
class ThreadPool
{
public:
/*! \brief Constructs a ThreadPool.
*
* The number of workers will be deduced from hardware.
*/
explicit ThreadPool();
/*! \brief Constructs a ThreadPool.
* \param pool_size Number of threads to start.
*/
explicit ThreadPool(std::size_t pool_size);
/*! \brief Constructs a ThreadPool.
* \param hooks Hooks to register in the pool.
*/
explicit ThreadPool(std::shared_ptr<Hooks> hooks);
/*! \brief Constructs a ThreadPool.
* \param pool_size Number of threads to start.
* \param hooks Hooks to register in the pool.
*/
ThreadPool(std::size_t pool_size, std::shared_ptr<Hooks> hooks);
/*! \brief Stops the pool and clean all workers.
*/
~ThreadPool();
ThreadPool(ThreadPool &&);
/*! \brief Run a task in the SingleQueue.
* \returns Returns a future containing the result of the task.
*
* When a task is ran in the SingleQueue, the callable object will be
* packaged in a packaged_task and put in the inner task_queue. A waiting
* worker will pick the task and execute it. If no workers are available, the
* task will remain in the queue until a worker picks it up.
*/
template <typename Function, typename... Args>
auto run(Function&& f, Args&&... args)
-> std::future<typename std::result_of<Function(Args...)>::type>;
/*! \brief Stop the ThreadPool.
*
* A stopped ThreadPool will discard any task dispatched to it. All workers
* will discard new tasks, but the threads will not exit.
*/
void stop();
/* I don't like this implementation for hooks with a shared pointer. I don't
* know why but it makes me feel uncomfortable.
*
* Our options are:
* shared_ptr: easy solution. But do we really need shared ownership ? I don't
* think it's necessary for such a simple interface.
* unique_ptr: user probably wants to keep ownership of the hooks if it uses
* them to store data. It would require a way to give back ownership to user
* (ie give/take ala rust).
* weak_ptr: requires the user to make a shared_ptr. Would clear the weak_ptr
* when the shared_ptr is destroyed (which does not happen with raw pointer)
*/
/*! \brief Register a ThreadPool::Hooks class.
* \param hooks The class to be registered
*/
void register_hooks(std::shared_ptr<Hooks> hooks);
/*! \brief Check the state of the threadpool
* \returns True if the ThreadPool is stopped, false otherwise.
*/
bool is_stopped() const noexcept;
/*! \brief Check on the number of threads not currently working.
* \returns The number of threads currently waiting for a task.
*
* The number might be imprecise, as between the time the value is read and
* returned, a thread might become unavailable.
*/
std::size_t threads_available() const noexcept;
/*! \brief Check on the number of threads currently working.
* \returns The number of threads currently working.
*
* The number might be imprecise, as between the time the value is read and
* returned, a thread might finish a task and become available.
*/
std::size_t threads_working() const noexcept;
private:
using task_type = std::packaged_task<void()>;
/*! \brief Starts the pool when the pool is constructed.
*
* It will starts _pool_size threads.
*/
void start_pool();
/*! \brief Clean the pool and join threads of dead workers.
*
* This method may be called at any time by any thread putting a job in the
* queue. This function acquires a lock on the pool vector.
*/
void clean();
/*! \brief Joins all threads in the pool.
*
* Should only be called from destructor. This method will stop all the
* worker and join the corresponding thread.
*/
void terminate();
/*! \brief Find the worker for which to dispatch the tasks
* \return The index in the worker array to which a task should be
* dispatch.
*/
std::size_t get_dispatch_worker();
/*! \brief Dispatch a task to a given worker
* \param idx Index of the worker to dispatch the work at
* \param task Task to dispatch into the worker
*/
template <typename TaskType>
void dispatch_work(const std::size_t idx, TaskType task);
/*! \brief Inner worker class. Capture the ThreadPool when built.
*
* The only job of this class is to run tasks. It will use the captured
* ThreadPool to interact with it.
*/
struct Worker
{
public:
/*! \brief Construct a worker.
* \param pool The ThreadPool the worker works for.
* \param idx
*/
explicit Worker(ThreadPool* pool, std::size_t idx);
/*! \brief Poll task from the queue.
* \param nb_task Number of tasks to run and then exit. If 0 then run until
* the ThreadPool stops.
*/
void operator()();
/*! \brief Stop the Worker
*/
void stop();
/*! \brief Start the Worker
*/
void start();
/*! \brief Check the state of the worker
* \returns True if the worker is stopped, false otherwise.
*/
bool is_stopped() const noexcept;
/*! \brief The task queue.
*
* Access to this task queue should **always** be done while locking using
* tasks_lock mutex.
*/
std::queue<task_type> tasks;
/*! \brief Mutex regulating acces to tasks.
*/
mutable std::mutex tasks_lock;
/*! \brief Condition variable used to wake the worker for when a task is
* available.
*/
std::condition_variable cv_variable;
std::atomic<std::size_t> queue_size;
private:
task_type extract_task(std::queue<task_type>& task_queue);
std::pair<bool, task_type> work_steal();
std::pair<bool, task_type> find_task();
void wait_for_start();
/*! \brief Captured ThreadPool that the worker works for.
*/
ThreadPool* pool;
std::atomic<bool> stopped;
std::atomic<bool> started;
const std::size_t idx;
};
/*! \brief Check if the pool can spawn more workers, and spawn one for a
* single task
*
* It will check the current number of spawned threads and if it can spawn
* or not a new thread. If a thread can be spawned, one is created.
*/
void check_spawn_single_worker();
/*! \brief Vector of thread, the actual thread pool.
*
* Emplacing in this vector construct and launch a thread.
*/
std::vector<std::pair<std::thread, std::unique_ptr<Worker>>> pool;
/*! \brief Mutex regulating acces to the pool
*/
mutable std::mutex pool_lock;
/*! \brief Number of waiting threads in the pool.
*/
std::atomic<std::size_t> waiting_threads;
/*! \brief Number of threads executing a task in the pool.
*/
std::atomic<std::size_t> working_threads;
/*! \brief Boolean representing if the pool is stopped.
*
*/
std::atomic<bool> stopped;
/*! \brief Struct containing all hooks the threadpool will call.
*/
std::shared_ptr<Hooks> hooks;
/*! \brief Size of the pool.
*/
std::size_t pool_size;
};
// ThreadPool impl
inline ThreadPool::ThreadPool()
: ThreadPool(std::thread::hardware_concurrency(), nullptr)
{
}
inline ThreadPool::ThreadPool(std::size_t pool_size)
: ThreadPool(pool_size, nullptr)
{
}
inline ThreadPool::ThreadPool(std::shared_ptr<Hooks> hooks)
: ThreadPool(std::thread::hardware_concurrency(), hooks)
{
}
inline ThreadPool::ThreadPool(std::size_t pool_size, std::shared_ptr<Hooks> hooks)
: waiting_threads(0)
, working_threads(0)
, stopped(false)
, hooks(hooks)
, pool_size(pool_size)
{
start_pool();
}
inline ThreadPool::~ThreadPool()
{
stop();
terminate();
}
inline ThreadPool::ThreadPool(ThreadPool &&that)
: waiting_threads(0),
working_threads(0),
stopped(false),
hooks(that.hooks),
pool_size(that.pool_size) {
that.stop();
start_pool();
}
template <typename Function, typename... Args>
auto ThreadPool::run(Function&& f, Args&&... args)
-> std::future<typename std::result_of<Function(Args...)>::type>
{
using task_return_type = typename std::result_of<Function(Args...)>::type;
// Create a packaged task from the callable object to fetch its result
// with get_future()
auto task = std::packaged_task<task_return_type()>(
std::bind(std::forward<Function&&>(f), std::forward<Args&&...>(args)...));
auto result = task.get_future();
std::size_t idx = this->get_dispatch_worker();
if (stopped)
{
return result;
}
dispatch_work(idx, std::move(task));
return result;
}
inline std::size_t ThreadPool::get_dispatch_worker()
{
// For now we dispatch at random. If the random index is on a worker that is
// stopped but now yet cleaned, return another idx;
static std::random_device seeder;
static std::mt19937 engine(seeder());
std::uniform_int_distribution<int> dist(0, pool.size() - 1);
return dist(engine);
}
template <typename TaskType>
inline void ThreadPool::dispatch_work(const std::size_t idx, TaskType task)
{
auto& worker = pool[idx];
{
std::lock_guard<decltype(Worker::tasks_lock)> lk(worker.second->tasks_lock);
worker.second->tasks.emplace(std::move(task));
}
worker.second->queue_size--;
worker.second->cv_variable.notify_one();
}
inline void ThreadPool::stop()
{
stopped = true;
std::lock_guard<decltype(pool_lock)> pl(pool_lock);
for (const auto& w : pool)
{
w.second->stop();
}
}
inline void ThreadPool::terminate()
{
std::lock_guard<decltype(pool_lock)> pl(pool_lock);
// Join everything
for (auto& w : pool)
{
w.first.join();
CALL_HOOK_POOL(on_worker_die);
}
}
inline void ThreadPool::start_pool()
{
std::lock_guard<decltype(pool_lock)> pl(pool_lock);
for (std::size_t i = 0; i < pool_size; i++)
{
auto w = std::unique_ptr<Worker>(new Worker(this, i));
pool.push_back(
std::pair<std::thread, std::unique_ptr<Worker>>(std::thread(std::ref(*w)), std::move(w)));
CALL_HOOK_POOL(on_worker_add);
}
for (auto& w : pool)
{
w.second->start();
}
}
inline bool ThreadPool::is_stopped() const noexcept
{
return stopped;
}
inline std::size_t ThreadPool::threads_available() const noexcept
{
return waiting_threads.load();
}
inline std::size_t ThreadPool::threads_working() const noexcept
{
return working_threads.load();
}
inline void ThreadPool::register_hooks(std::shared_ptr<Hooks> hooks)
{
this->hooks = hooks;
}
// Worker impl
inline ThreadPool::Worker::Worker(ThreadPool* pool, std::size_t idx)
: queue_size(0)
, pool(pool)
, stopped(false)
, started(false)
, idx(idx)
{
}
inline void ThreadPool::Worker::operator()()
{
wait_for_start();
for (;;)
{
// Thread is waiting
pool->waiting_threads += 1;
auto task = find_task();
if (!task.first)
{
break;
}
CALL_HOOK_WORKER(pre_task_hook);
pool->waiting_threads -= 1;
pool->working_threads += 1;
task.second();
CALL_HOOK_WORKER(post_task_hook);
pool->working_threads -= 1;
}
}
inline void ThreadPool::Worker::wait_for_start()
{
std::unique_lock<decltype(tasks_lock)> lock(tasks_lock);
cv_variable.wait(lock, [&] { return this->started == true; });
}
inline std::pair<bool, ThreadPool::task_type> ThreadPool::Worker::find_task()
{
for (;;)
{
#ifndef THREADPOOL_DISABLE_WORK_STEALING
if (tasks.empty())
{
// Try work stealing
auto res = work_steal();
if (res.first)
{
return res;
}
}
#endif
// Wait for a task in our queue
std::unique_lock<decltype(tasks_lock)> lock(tasks_lock);
cv_variable.wait(lock, [&] { return pool->stopped || this->stopped || !tasks.empty(); });
// Pool is stopped
if (pool->stopped || this->stopped)
{
return std::pair<bool, task_type>(false, task_type{});
}
return std::pair<bool, task_type>(true, extract_task(tasks));
}
}
inline std::pair<bool, ThreadPool::task_type> ThreadPool::Worker::work_steal()
{
#ifndef THREADPOOL_DISABLE_NEIGHBORS_WORK_STEALING
if (pool->stopped || this->stopped)
{
return std::pair<bool, task_type>(false, task_type{});
}
if (idx > 0)
{
auto& worker = pool->pool[idx - 1];
if (worker.second->queue_size != 0)
{
std::unique_lock<decltype(Worker::tasks_lock)> lk(worker.second->tasks_lock,
std::try_to_lock);
if (lk.owns_lock() && !worker.second->tasks.empty())
{
return std::pair<bool, task_type>(true, extract_task(worker.second->tasks));
}
}
}
if (idx < (pool->pool.size() - 1))
{
auto& worker = pool->pool[idx + 1];
if (worker.second->queue_size != 0)
{
std::unique_lock<decltype(Worker::tasks_lock)> lk(worker.second->tasks_lock,
std::try_to_lock);
if (lk.owns_lock() && !worker.second->tasks.empty())
{
return std::pair<bool, task_type>(true, extract_task(worker.second->tasks));
}
}
}
#else
for (auto& w : pool->pool)
{
if (pool->stopped || this->stopped)
{
return std::pair<bool, task_type>(false, task_type{});
}
// FIXME: add try lock
std::lock_guard<decltype(Worker::tasks_lock)> lk(w.second->tasks_lock);
if (w.second->tasks.empty())
{
continue;
}
return std::pair<bool, task_type>(true, extract_task(w.second->tasks));
}
#endif
return std::pair<bool, task_type>(false, task_type{});
}
inline ThreadPool::task_type
ThreadPool::Worker::extract_task(std::queue<ThreadPool::task_type>& task_queue)
{
task_type task = std::move(task_queue.front());
task_queue.pop();
queue_size--;
return task;
}
inline void ThreadPool::Worker::stop()
{
{
std::lock_guard<decltype(Worker::tasks_lock)> lock(tasks_lock);
stopped = true;
}
cv_variable.notify_one();
}
inline void ThreadPool::Worker::start()
{
{
std::lock_guard<decltype(Worker::tasks_lock)> lock(tasks_lock);
started = true;
}
cv_variable.notify_one();
}
inline bool ThreadPool::Worker::is_stopped() const noexcept
{
return stopped;
}
} // namespace ThreadPool
|