File: array_hash.h

package info (click to toggle)
spades 3.15.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 96,896 kB
  • sloc: cpp: 850,748; ansic: 156,813; python: 23,134; perl: 4,547; sh: 2,352; makefile: 1,273; java: 890; pascal: 875; xml: 19
file content (1772 lines) | stat: -rw-r--r-- 65,243 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
/**
 * MIT License
 * 
 * Copyright (c) 2017 Tessil
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef TSL_ARRAY_HASH_H
#define TSL_ARRAY_HASH_H

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <vector>
#include "array_growth_policy.h"


/*
 * __has_include is a bit useless (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79433),
 * check also __cplusplus version.
 */
#ifdef __has_include
#    if __has_include(<string_view>) && __cplusplus >= 201703L
#        define TSL_AH_HAS_STRING_VIEW
#    endif
#endif


#ifdef TSL_AH_HAS_STRING_VIEW
#    include <string_view>
#endif


#ifdef TSL_DEBUG
#    define tsl_ah_assert(expr) assert(expr)
#else
#    define tsl_ah_assert(expr) (static_cast<void>(0))
#endif



/**
 * Implementation of the array hash structure described in the 
 * "Cache-conscious collision resolution in string hash tables." (Askitis Nikolas and Justin Zobel, 2005) paper.
 */
namespace tsl {
    
namespace ah {
    
template<class CharT>
struct str_hash {
#ifdef TSL_AH_HAS_STRING_VIEW
    std::size_t operator()(const CharT* key, std::size_t key_size) const {
        return std::hash<std::basic_string_view<CharT>>()(std::basic_string_view<CharT>(key, key_size));
    }
#else
    /**
     * FNV-1a hash
     */
    std::size_t operator()(const CharT* key, std::size_t key_size) const {
        static const std::size_t init = std::size_t((sizeof(std::size_t) == 8)?0xcbf29ce484222325:0x811c9dc5);
        static const std::size_t multiplier = std::size_t((sizeof(std::size_t) == 8)?0x100000001b3:0x1000193);
        
        std::size_t hash = init;
        for (std::size_t i = 0; i < key_size; ++i) {
            hash ^= key[i];
            hash *= multiplier;
        }
        
        return hash;
    }
#endif
};  

template<class CharT>
struct str_equal {
    bool operator()(const CharT* key_lhs, std::size_t key_size_lhs,
                    const CharT* key_rhs, std::size_t key_size_rhs) const
    {
        if(key_size_lhs != key_size_rhs) {
            return false;
        }
        else {
            return std::memcmp(key_lhs, key_rhs, key_size_lhs * sizeof(CharT)) == 0;
        }
    }
}; 
}


namespace detail_array_hash {

template<typename T, typename = void>
struct is_iterator: std::false_type {
};

template<typename T>
struct is_iterator<T, typename std::enable_if<!std::is_same<typename std::iterator_traits<T>::iterator_category, void>::value>::type>: std::true_type {
};
    
static constexpr bool is_power_of_two(std::size_t value) {
    return value != 0 && (value & (value - 1)) == 0;
}

template<typename T, typename U>
static T numeric_cast(U value, const char* error_message = "numeric_cast() failed.") {
    T ret = static_cast<T>(value);
    if(static_cast<U>(ret) != value) {
        throw std::runtime_error(error_message);
    }
    
    const bool is_same_signedness = (std::is_unsigned<T>::value && std::is_unsigned<U>::value) ||
                                    (std::is_signed<T>::value && std::is_signed<U>::value);
    if(!is_same_signedness && (ret < T{}) != (value < U{})) {
        throw std::runtime_error(error_message);
    }
    
    return ret;
}



/**
 * Fixed size type used to represent size_type values on serialization. Need to be big enough
 * to represent a std::size_t on 32 and 64 bits platforms, and must be the same size on both platforms.
 */
using slz_size_type = std::uint64_t;

template<class T, class Deserializer>
static T deserialize_value(Deserializer& deserializer) {
    // MSVC < 2017 is not conformant, circumvent the problem by removing the template keyword
#if defined (_MSC_VER) && _MSC_VER < 1910
    return deserializer.Deserializer::operator()<T>();
#else
    return deserializer.Deserializer::template operator()<T>();
#endif
}

/**
 * For each string in the bucket, store the size of the string, the chars of the string 
 * and T, if it's not void. T should be either void or an unsigned type.
 * 
 * End the buffer with END_OF_BUCKET flag. END_OF_BUCKET has the same type as the string size variable.
 * 
 * m_buffer (CharT*):
 * | size of str1 (KeySizeT) | str1 (const CharT*) | value (T if T != void) | ... | 
 * | size of strN (KeySizeT) | strN (const CharT*) | value (T if T != void) | END_OF_BUCKET (KeySizeT) |
 * 
 * m_buffer is null if there is no string in the bucket.
 * 
 * KeySizeT and T are extended to be a multiple of CharT when stored in the buffer.
 * 
 * Use std::malloc and std::free instead of new and delete so we can have access to std::realloc.
 */
template<class CharT,
         class T,
         class KeyEqual,
         class KeySizeT,
         bool StoreNullTerminator>
class array_bucket {
    template<typename U>
    using has_mapped_type = typename std::integral_constant<bool, !std::is_same<U, void>::value>;
    
    static_assert(!has_mapped_type<T>::value || std::is_unsigned<T>::value, 
                  "T should be either void or an unsigned type.");
    
    static_assert(std::is_unsigned<KeySizeT>::value, "KeySizeT should be an unsigned type.");
    
public:
    template<bool IsConst>
    class array_bucket_iterator;
    
    using char_type = CharT;
    using key_size_type = KeySizeT;
    using mapped_type = T;
    using size_type = std::size_t;
    using key_equal = KeyEqual;
    using iterator = array_bucket_iterator<false>;
    using const_iterator = array_bucket_iterator<true>;
    
    static_assert(sizeof(KeySizeT) <= sizeof(size_type), "sizeof(KeySizeT) should be <= sizeof(std::size_t;)");
    static_assert(std::is_unsigned<size_type>::value, "");
    
private:
    /**
     * Return how much space in bytes the type U will take when stored in the buffer.
     * As the buffer is of type CharT, U may take more space than sizeof(U).
     * 
     * Example: sizeof(CharT) = 4, sizeof(U) = 2 => U will take 4 bytes in the buffer instead of 2.
     */
    template<typename U>
    static constexpr size_type sizeof_in_buff() noexcept {
        static_assert(is_power_of_two(sizeof(U)), "sizeof(U) should be a power of two.");
        static_assert(is_power_of_two(sizeof(CharT)), "sizeof(CharT) should be a power of two.");
        
        return std::max(sizeof(U), sizeof(CharT));
    }
    
    /**
     * Same as sizeof_in_buff<U>, but instead of returning the size in bytes return it in term of sizeof(CharT).
     */
    template<typename U>
    static constexpr size_type size_as_char_t() noexcept {
        return sizeof_in_buff<U>() / sizeof(CharT);
    }

    static key_size_type read_key_size(const CharT* buffer) noexcept {
        key_size_type key_size;
        std::memcpy(&key_size, buffer, sizeof(key_size));
        
        return key_size;
    }
    
    static mapped_type read_value(const CharT* buffer) noexcept {
        mapped_type value;
        std::memcpy(&value, buffer, sizeof(value));
        
        return value;
    }
    
    static bool is_end_of_bucket(const CharT* buffer) noexcept {
        return read_key_size(buffer) == END_OF_BUCKET;
    }
    
public:
    /**
     * Return the size required for an entry with a key of size 'key_size'.
     */
    template<class U = T, typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    static size_type entry_required_bytes(size_type key_size) noexcept {
        return sizeof_in_buff<key_size_type>() + (key_size + KEY_EXTRA_SIZE) * sizeof(CharT);
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    static size_type entry_required_bytes(size_type key_size) noexcept {
        return sizeof_in_buff<key_size_type>() + (key_size + KEY_EXTRA_SIZE) * sizeof(CharT) + 
               sizeof_in_buff<mapped_type>();
    }
    
private:
    /**
     * Return the size of the current entry in buffer.
     */
    static size_type entry_size_bytes(const CharT* buffer) noexcept {
        return entry_required_bytes(read_key_size(buffer));
    }
    
public:    
    template<bool IsConst>
    class array_bucket_iterator {
        friend class array_bucket;
        
        using buffer_type = typename std::conditional<IsConst, const CharT, CharT>::type;
        
        explicit array_bucket_iterator(buffer_type* position) noexcept: m_position(position) {
        }
        
    public:
        using iterator_category = std::forward_iterator_tag;
        using value_type = void;
        using difference_type = std::ptrdiff_t;
        using reference = void;
        using pointer = void;
        
    public:        
        array_bucket_iterator() noexcept: m_position(nullptr) {
        }
        
        const CharT* key() const {
            return m_position + size_as_char_t<key_size_type>();
        }
        
        size_type key_size() const {
            return read_key_size(m_position);
        }
        
        template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
        U value() const {
            return read_value(m_position + size_as_char_t<key_size_type>() + key_size() + KEY_EXTRA_SIZE);
        }
        
        
        template<class U = T, typename std::enable_if<has_mapped_type<U>::value && !IsConst && std::is_same<U, T>::value>::type* = nullptr>
        void set_value(U value) noexcept {
            std::memcpy(m_position + size_as_char_t<key_size_type>() + key_size() + KEY_EXTRA_SIZE, 
                        &value, sizeof(value));
        }
        
        array_bucket_iterator& operator++() {
            m_position += entry_size_bytes(m_position)/sizeof(CharT);
            if(is_end_of_bucket(m_position)) {
                m_position = nullptr;
            }
            
            return *this;
        }
    
        array_bucket_iterator operator++(int) {
            array_bucket_iterator tmp(*this);
            ++*this;
            
            return tmp;
        }
        
        friend bool operator==(const array_bucket_iterator& lhs, const array_bucket_iterator& rhs) { 
            return lhs.m_position == rhs.m_position; 
        }
        
        friend bool operator!=(const array_bucket_iterator& lhs, const array_bucket_iterator& rhs) { 
            return !(lhs == rhs); 
        }
        
    private:
        buffer_type* m_position;
    };
    
    
    
    static iterator end_it() noexcept {
        return iterator(nullptr);
    }
    
    static const_iterator cend_it() noexcept {
        return const_iterator(nullptr);
    }
    
public:
    array_bucket(): m_buffer(nullptr) {
    }
    
    /**
     * Reserve 'size' in the buffer of the bucket. The created bucket is empty.
     */
    array_bucket(std::size_t size): m_buffer(nullptr) {
        if(size == 0) {
            return;
        }
        
        m_buffer = static_cast<CharT*>(std::malloc(size*sizeof(CharT) + sizeof_in_buff<decltype(END_OF_BUCKET)>()));
        if(m_buffer == nullptr) {
            throw std::bad_alloc();
        }
        
        const auto end_of_bucket = END_OF_BUCKET;
        std::memcpy(m_buffer, &end_of_bucket, sizeof(end_of_bucket));
    }
    
    ~array_bucket() {
        clear();
    }
    
    array_bucket(const array_bucket& other) {
        if(other.m_buffer == nullptr) {
            m_buffer = nullptr;
            return;
        }
        
        const size_type other_buffer_size = other.size();
        m_buffer = static_cast<CharT*>(std::malloc(other_buffer_size*sizeof(CharT) + sizeof_in_buff<decltype(END_OF_BUCKET)>()));
        if(m_buffer == nullptr) {
            throw std::bad_alloc();
        }
        
        std::memcpy(m_buffer, other.m_buffer, other_buffer_size*sizeof(CharT));
        
        const auto end_of_bucket = END_OF_BUCKET;
        std::memcpy(m_buffer + other_buffer_size, &end_of_bucket, sizeof(end_of_bucket));
    }
    
    array_bucket(array_bucket&& other) noexcept: m_buffer(other.m_buffer) {
        other.m_buffer = nullptr;
    }
    
    array_bucket& operator=(array_bucket other) noexcept {
        other.swap(*this);
        
        return *this;
    }
    
    void swap(array_bucket& other) noexcept {
        std::swap(m_buffer, other.m_buffer);
    }
    
    iterator begin() noexcept { return iterator(m_buffer); }
    iterator end() noexcept { return iterator(nullptr); }
    const_iterator begin() const noexcept { return cbegin(); }
    const_iterator end() const noexcept { return cend(); }
    const_iterator cbegin() const noexcept { return const_iterator(m_buffer); }
    const_iterator cend() const noexcept { return const_iterator(nullptr); }
    
    /**
     * Return an iterator pointing to the key entry if presents or, if not there, to the position 
     * past the last element of the bucket. Return end() if the bucket has not be initialized yet.
     * 
     * The boolean of the pair is set to true if the key is there, false otherwise.
     */
    std::pair<const_iterator, bool> find_or_end_of_bucket(const CharT* key, size_type key_size) const noexcept {
        if(m_buffer == nullptr) {
            return std::make_pair(cend(), false);
        }
        
        const CharT* buffer_ptr_in_out = m_buffer;
        const bool found = find_or_end_of_bucket_impl(key, key_size, buffer_ptr_in_out);
        
        return std::make_pair(const_iterator(buffer_ptr_in_out), found);
    }
    
    /**
     * Append the element 'key' with its potential value at the end of the bucket. 
     * 'end_of_bucket' should point past the end of the last element in the bucket, end() if the bucket
     * was not intiailized yet. You usually get this value from find_or_end_of_bucket.
     * 
     * Return the position where the element was actually inserted.
     */
    template<class... ValueArgs>
    const_iterator append(const_iterator end_of_bucket, const CharT* key, size_type key_size, 
                          ValueArgs&&... value) 
    {
        const key_size_type key_sz = as_key_size_type(key_size);
        
        if(end_of_bucket == cend()) {
            tsl_ah_assert(m_buffer == nullptr);
            
            const size_type buffer_size = entry_required_bytes(key_sz) + sizeof_in_buff<decltype(END_OF_BUCKET)>();
                                            
            m_buffer = static_cast<CharT*>(std::malloc(buffer_size));
            if(m_buffer == nullptr) {
                throw std::bad_alloc();
            }
            
            append_impl(key, key_sz, m_buffer, std::forward<ValueArgs>(value)...);
            
            return const_iterator(m_buffer);
        }
        else {
            tsl_ah_assert(is_end_of_bucket(end_of_bucket.m_position));
            
            const size_type current_size = ((end_of_bucket.m_position + size_as_char_t<decltype(END_OF_BUCKET)>()) - 
                                              m_buffer) * sizeof(CharT);
            const size_type new_size = current_size + entry_required_bytes(key_sz);
            
            
            CharT* new_buffer = static_cast<CharT*>(std::realloc(m_buffer, new_size));
            if(new_buffer == nullptr) {
                throw std::bad_alloc();
            }
            m_buffer = new_buffer;
            
            
            CharT* buffer_append_pos = m_buffer + current_size / sizeof(CharT) - 
                                       size_as_char_t<decltype(END_OF_BUCKET)>();
            append_impl(key, key_sz, buffer_append_pos, std::forward<ValueArgs>(value)...);  
            
            return const_iterator(buffer_append_pos);
        }
        
    }
    
    const_iterator erase(const_iterator position) noexcept {
        tsl_ah_assert(position.m_position != nullptr && !is_end_of_bucket(position.m_position));
        
        // get mutable pointers
        CharT* start_entry = m_buffer + (position.m_position - m_buffer); 
        CharT* start_next_entry = start_entry + entry_size_bytes(start_entry) / sizeof(CharT);
        
        
        CharT* end_buffer_ptr = start_next_entry;
        while(!is_end_of_bucket(end_buffer_ptr)) {
            end_buffer_ptr += entry_size_bytes(end_buffer_ptr) / sizeof(CharT);
        }
        end_buffer_ptr += size_as_char_t<decltype(END_OF_BUCKET)>();
        
        
        const size_type size_to_move = (end_buffer_ptr - start_next_entry) * sizeof(CharT);
        std::memmove(start_entry, start_next_entry, size_to_move);
        
        
        if(is_end_of_bucket(m_buffer)) {
            clear();
            return cend();
        }
        else if(is_end_of_bucket(start_entry)) {
            return cend();
        }
        else {
            return const_iterator(start_entry);
        }
    }
    
    /**
     * Return true if an element has been erased
     */
    bool erase(const CharT* key, size_type key_size) noexcept {
        if(m_buffer == nullptr) {
            return false;
        }
        
        const CharT* entry_buffer_ptr_in_out = m_buffer;
        bool found = find_or_end_of_bucket_impl(key, key_size, entry_buffer_ptr_in_out);
        if(found) {
            erase(const_iterator(entry_buffer_ptr_in_out));
            
            return true;
        }
        else {
            return false;
        }
    }
    
    /**
     * Bucket should be big enough and there is no check to see if the key already exists.
     * No check on key_size.
     */
    template<class... ValueArgs>
    void append_in_reserved_bucket_no_check(const CharT* key, size_type key_size, ValueArgs&&... value) noexcept {
        CharT* buffer_ptr = m_buffer;
        while(!is_end_of_bucket(buffer_ptr)) {
            buffer_ptr += entry_size_bytes(buffer_ptr)/sizeof(CharT);
        }
        
        append_impl(key, key_size_type(key_size), buffer_ptr, std::forward<ValueArgs>(value)...);
    }
    
    bool empty() const noexcept {
        return m_buffer == nullptr || is_end_of_bucket(m_buffer);
    }
    
    void clear() noexcept {
        std::free(m_buffer);
        m_buffer = nullptr;
    }
    
    iterator mutable_iterator(const_iterator pos) noexcept {
        return iterator(m_buffer + (pos.m_position - m_buffer)); 
    }
    
    template<class Serializer>
    void serialize(Serializer& serializer) const {
        const slz_size_type bucket_size = size();
        tsl_ah_assert(m_buffer != nullptr || bucket_size == 0);
        
        serializer(bucket_size);
        serializer(m_buffer, bucket_size);
    }
    
    template<class Deserializer>
    static array_bucket deserialize(Deserializer& deserializer) {
        array_bucket bucket;
        const slz_size_type bucket_size_ds = deserialize_value<slz_size_type>(deserializer);
        
        if(bucket_size_ds == 0) {
            return bucket;
        }
        
        const std::size_t bucket_size = numeric_cast<std::size_t>(bucket_size_ds, "Deserialized bucket_size is too big.");
        bucket.m_buffer = static_cast<CharT*>(std::malloc(bucket_size*sizeof(CharT) + sizeof_in_buff<decltype(END_OF_BUCKET)>()));
        if(bucket.m_buffer == nullptr) {
            throw std::bad_alloc();
        }
        
        
        deserializer(bucket.m_buffer, bucket_size);
        
        const auto end_of_bucket = END_OF_BUCKET;
        std::memcpy(bucket.m_buffer + bucket_size, &end_of_bucket, sizeof(end_of_bucket));
        
        
        tsl_ah_assert(bucket.size() == bucket_size);
        return bucket;
    }
    
private:
    key_size_type as_key_size_type(size_type key_size) const {
        if(key_size > MAX_KEY_SIZE) {
            throw std::length_error("Key is too long.");
        }
        
        return key_size_type(key_size);
    }
    
    /*
     * Return true if found, false otherwise. 
     * If true, buffer_ptr_in_out points to the start of the entry matching 'key'.
     * If false, buffer_ptr_in_out points to where the 'key' should be inserted.
     * 
     * Start search from buffer_ptr_in_out.
     */
    bool find_or_end_of_bucket_impl(const CharT* key, size_type key_size, 
                                    const CharT* & buffer_ptr_in_out) const noexcept
    {
        while(!is_end_of_bucket(buffer_ptr_in_out)) {
            const key_size_type buffer_key_size = read_key_size(buffer_ptr_in_out); 
            const CharT* buffer_str = buffer_ptr_in_out + size_as_char_t<key_size_type>();
            if(KeyEqual()(buffer_str, buffer_key_size, key, key_size)) {
                return true;
            }
            
            buffer_ptr_in_out += entry_size_bytes(buffer_ptr_in_out)/sizeof(CharT);
        }
        
        return false;
    }

    template<typename U = T, typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    void append_impl(const CharT* key, key_size_type key_size, CharT* buffer_append_pos) noexcept {
        std::memcpy(buffer_append_pos, &key_size, sizeof(key_size));
        buffer_append_pos += size_as_char_t<key_size_type>();
        
        std::memcpy(buffer_append_pos, key, key_size * sizeof(CharT));
        buffer_append_pos += key_size;
        
        const CharT zero = 0;
        std::memcpy(buffer_append_pos, &zero, KEY_EXTRA_SIZE * sizeof(CharT));
        buffer_append_pos += KEY_EXTRA_SIZE;
        
        const auto end_of_bucket = END_OF_BUCKET;
        std::memcpy(buffer_append_pos, &end_of_bucket, sizeof(end_of_bucket));
    }
    
    template<typename U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    void append_impl(const CharT* key, key_size_type key_size, CharT* buffer_append_pos, 
                typename array_bucket<CharT, U, KeyEqual, KeySizeT, StoreNullTerminator>::mapped_type value) noexcept 
    {        
        std::memcpy(buffer_append_pos, &key_size, sizeof(key_size));
        buffer_append_pos += size_as_char_t<key_size_type>();
        
        std::memcpy(buffer_append_pos, key, key_size * sizeof(CharT));
        buffer_append_pos += key_size;
        
        const CharT zero = 0;
        std::memcpy(buffer_append_pos, &zero, KEY_EXTRA_SIZE * sizeof(CharT));
        buffer_append_pos += KEY_EXTRA_SIZE;
        
        std::memcpy(buffer_append_pos, &value, sizeof(value));
        buffer_append_pos += size_as_char_t<mapped_type>();
        
        const auto end_of_bucket = END_OF_BUCKET;
        std::memcpy(buffer_append_pos, &end_of_bucket, sizeof(end_of_bucket));
    }
    
    /**
     * Return the number of CharT in m_buffer. As the size of the buffer is not stored to gain some space, 
     * the method need to find the EOF marker and is thus in O(n).
     */
    size_type size() const noexcept {
        if(m_buffer == nullptr) {
            return 0;
        }
        
        CharT* buffer_ptr = m_buffer;
        while(!is_end_of_bucket(buffer_ptr)) {
            buffer_ptr += entry_size_bytes(buffer_ptr)/sizeof(CharT);
        }
        
        return buffer_ptr - m_buffer;
    }
    
private:
    static const key_size_type END_OF_BUCKET = std::numeric_limits<key_size_type>::max();
    static const key_size_type KEY_EXTRA_SIZE = StoreNullTerminator?1:0;
    
    CharT* m_buffer;
    
public:
    static const key_size_type MAX_KEY_SIZE = 
                    // -1 for END_OF_BUCKET
                    key_size_type(std::numeric_limits<key_size_type>::max() - KEY_EXTRA_SIZE - 1);
};


template<class T>
class value_container {
public:
    void clear() noexcept {
        m_values.clear();
    }
    
    void reserve(std::size_t new_cap) {
        m_values.reserve(new_cap);
    }
    
    void shrink_to_fit() {
        m_values.shrink_to_fit();
    }

    friend void swap(value_container& lhs, value_container& rhs) {
        lhs.m_values.swap(rhs.m_values);
    }
    
protected:
    static constexpr float VECTOR_GROWTH_RATE = 1.5f;
    
    // TODO use a sparse array? or a std::dequeu
    std::vector<T> m_values;
};

template<>
class value_container<void> {
public:
    void clear() noexcept {
    }
    
    void shrink_to_fit() {
    }
    
    void reserve(std::size_t /*new_cap*/) {
    }
};



/**
 * If there is no value in the array_hash (in the case of a set for example), T should be void.
 * 
 * The size of a key string is limited to std::numeric_limits<KeySizeT>::max() - 1.
 * 
 * The number of elements in the map is limited to std::numeric_limits<IndexSizeT>::max().
 */
template<class CharT,
         class T, 
         class Hash,
         class KeyEqual,
         bool StoreNullTerminator,
         class KeySizeT,
         class IndexSizeT,
         class GrowthPolicy>
class array_hash: private value_container<T>, private Hash, private GrowthPolicy {
private:
    template<typename U>
    using has_mapped_type = typename std::integral_constant<bool, !std::is_same<U, void>::value>;
    
    /**
     * If there is a mapped type in array_hash, we store the values in m_values of value_container class 
     * and we store an index to m_values in the bucket. The index is of type IndexSizeT.
     */
    using array_bucket = tsl::detail_array_hash::array_bucket<CharT,
                                                              typename std::conditional<has_mapped_type<T>::value,
                                                                                        IndexSizeT,
                                                                                        void>::type,
                                                              KeyEqual, KeySizeT, StoreNullTerminator>;
    
public:
    template<bool IsConst>
    class array_hash_iterator;
    
    using char_type = CharT;
    using key_size_type = KeySizeT;
    using index_size_type = IndexSizeT;
    using size_type = std::size_t;
    using hasher = Hash;
    using key_equal = KeyEqual;
    using iterator = array_hash_iterator<false>;
    using const_iterator = array_hash_iterator<true>;
   
    
/*
 * Iterator classes
 */ 
public:
    template<bool IsConst>
    class array_hash_iterator {
        friend class array_hash;
        
    private:
        using iterator_array_bucket = typename array_bucket::const_iterator;
                                                            
        using iterator_buckets = typename std::conditional<IsConst, 
                                                           typename std::vector<array_bucket>::const_iterator, 
                                                           typename std::vector<array_bucket>::iterator>::type;
                                                            
        using array_hash_ptr = typename std::conditional<IsConst, 
                                                         const array_hash*, 
                                                         array_hash*>::type;

    public:
        using iterator_category = std::forward_iterator_tag;
        using value_type = typename std::conditional<has_mapped_type<T>::value, T, void>::type;
        using difference_type = std::ptrdiff_t;
        using reference = typename std::conditional<has_mapped_type<T>::value, 
                                                    typename std::conditional<
                                                                IsConst, 
                                                                typename std::add_lvalue_reference<const T>::type,
                                                                typename std::add_lvalue_reference<T>::type>::type, 
                                                    void>::type;
        using pointer = typename std::conditional<has_mapped_type<T>::value, 
                                                  typename std::conditional<IsConst, const T*, T*>::type, 
                                                  void>::type;
        
                                                        
    private:                                                            
        array_hash_iterator(iterator_buckets buckets_iterator, iterator_array_bucket array_bucket_iterator, 
                            array_hash_ptr array_hash_p) noexcept: 
            m_buckets_iterator(buckets_iterator),
            m_array_bucket_iterator(array_bucket_iterator),
            m_array_hash(array_hash_p)
        {
            tsl_ah_assert(m_array_hash != nullptr);
        }
        
    public:
        array_hash_iterator() noexcept: m_array_hash(nullptr) {
        }
        
        template<bool TIsConst = IsConst, typename std::enable_if<TIsConst>::type* = nullptr>
        array_hash_iterator(const array_hash_iterator<!TIsConst>& other) noexcept : 
                                                m_buckets_iterator(other.m_buckets_iterator), 
                                                m_array_bucket_iterator(other.m_array_bucket_iterator),
                                                m_array_hash(other.m_array_hash)
        {
        }

        array_hash_iterator(const array_hash_iterator& other) = default;
        array_hash_iterator(array_hash_iterator&& other) = default;
        array_hash_iterator& operator=(const array_hash_iterator& other) = default;
        array_hash_iterator& operator=(array_hash_iterator&& other) = default;
        
        const CharT* key() const {
            return m_array_bucket_iterator.key();
        }
        
        size_type key_size() const {
            return m_array_bucket_iterator.key_size();
        }
        
#ifdef TSL_AH_HAS_STRING_VIEW
        std::basic_string_view<CharT> key_sv() const {
            return std::basic_string_view<CharT>(key(), key_size());
        }
#endif
        
        template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
        reference value() const {
            return this->m_array_hash->m_values[value_position()];
        }
        
        template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
        reference operator*() const {
            return value();
        }
        
        template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
        pointer operator->() const {
            return std::addressof(value());
        }
        
        array_hash_iterator& operator++() {
            tsl_ah_assert(m_buckets_iterator != m_array_hash->m_buckets_data.end());
            tsl_ah_assert(m_array_bucket_iterator != m_buckets_iterator->cend());
            
            ++m_array_bucket_iterator;
            if(m_array_bucket_iterator == m_buckets_iterator->cend()) {
                do {
                    ++m_buckets_iterator;
                } while(m_buckets_iterator != m_array_hash->m_buckets_data.end() && 
                        m_buckets_iterator->empty());
                
                if(m_buckets_iterator != m_array_hash->m_buckets_data.end()) {
                    m_array_bucket_iterator = m_buckets_iterator->cbegin();
                }
            }
            
            return *this; 
        }
        
        array_hash_iterator operator++(int) {
            array_hash_iterator tmp(*this);
            ++*this;
            
            return tmp;
        }
        
        friend bool operator==(const array_hash_iterator& lhs, const array_hash_iterator& rhs) { 
            return lhs.m_buckets_iterator == rhs.m_buckets_iterator && 
                   lhs.m_array_bucket_iterator == rhs.m_array_bucket_iterator &&
                   lhs.m_array_hash == rhs.m_array_hash; 
        }
        
        friend bool operator!=(const array_hash_iterator& lhs, const array_hash_iterator& rhs) { 
            return !(lhs == rhs); 
        }
        
    private:
        template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
        IndexSizeT value_position() const {
            return this->m_array_bucket_iterator.value();
        }
        
    private:
        iterator_buckets m_buckets_iterator;
        iterator_array_bucket m_array_bucket_iterator;
        
        array_hash_ptr m_array_hash;
    };
    
    
    
public:    
    array_hash(size_type bucket_count, 
               const Hash& hash,
               float max_load_factor): value_container<T>(), 
                                       Hash(hash), 
                                       GrowthPolicy(bucket_count), 
                                       m_buckets_data(bucket_count > max_bucket_count()?
                                                      throw std::length_error("The map exceeds its maxmimum bucket count."):
                                                      bucket_count), 
                                       m_buckets(m_buckets_data.empty()?static_empty_bucket_ptr():m_buckets_data.data()), 
                                       m_nb_elements(0) 
    {
        this->max_load_factor(max_load_factor);
    }
    
    array_hash(const array_hash& other): value_container<T>(other),
                                         Hash(other),
                                         GrowthPolicy(other),
                                         m_buckets_data(other.m_buckets_data),
                                         m_buckets(m_buckets_data.empty()?static_empty_bucket_ptr():m_buckets_data.data()),
                                         m_nb_elements(other.m_nb_elements),
                                         m_max_load_factor(other.m_max_load_factor),
                                         m_load_threshold(other.m_load_threshold) 
    {
    }
    
    array_hash(array_hash&& other) noexcept(std::is_nothrow_move_constructible<value_container<T>>::value &&
                                            std::is_nothrow_move_constructible<Hash>::value &&
                                            std::is_nothrow_move_constructible<GrowthPolicy>::value &&
                                            std::is_nothrow_move_constructible<std::vector<array_bucket>>::value)
                                  : value_container<T>(std::move(other)),
                                    Hash(std::move(other)),
                                    GrowthPolicy(std::move(other)),
                                    m_buckets_data(std::move(other.m_buckets_data)),
                                    m_buckets(m_buckets_data.empty()?static_empty_bucket_ptr():m_buckets_data.data()),
                                    m_nb_elements(other.m_nb_elements),
                                    m_max_load_factor(other.m_max_load_factor),
                                    m_load_threshold(other.m_load_threshold)
    {
        other.value_container<T>::clear();
        other.GrowthPolicy::clear();
        other.m_buckets_data.clear();
        other.m_buckets = static_empty_bucket_ptr();
        other.m_nb_elements = 0;
        other.m_load_threshold = 0;
    }
    
    array_hash& operator=(const array_hash& other) {
        if(&other != this) {
            value_container<T>::operator=(other);
            Hash::operator=(other);
            GrowthPolicy::operator=(other);
            
            m_buckets_data = other.m_buckets_data;
            m_buckets = m_buckets_data.empty()?static_empty_bucket_ptr():
                                                             m_buckets_data.data();
            m_nb_elements = other.m_nb_elements;
            m_max_load_factor = other.m_max_load_factor;
            m_load_threshold = other.m_load_threshold;
        }
        
        return *this;
    }
    
    array_hash& operator=(array_hash&& other) {
        other.swap(*this);
        other.clear();
        
        return *this;
    }
    
    
    /*
     * Iterators 
     */
    iterator begin() noexcept {
        auto begin = m_buckets_data.begin();
        while(begin != m_buckets_data.end() && begin->empty()) {
            ++begin;
        }
        
        return (begin != m_buckets_data.end())?iterator(begin, begin->cbegin(), this):end();      
    }
    
    const_iterator begin() const noexcept {
        return cbegin();
    }
    
    const_iterator cbegin() const noexcept {
        auto begin = m_buckets_data.cbegin();
        while(begin != m_buckets_data.cend() && begin->empty()) {
            ++begin;
        }
        
        return (begin != m_buckets_data.cend())?const_iterator(begin, begin->cbegin(), this):cend();
    }
    
    iterator end() noexcept {
        return iterator(m_buckets_data.end(), array_bucket::cend_it(), this);
    }
    
    const_iterator end() const noexcept {
        return cend();
    }
    
    const_iterator cend() const noexcept {
        return const_iterator(m_buckets_data.end(), array_bucket::cend_it(), this);
    }
    
    
    /*
     * Capacity
     */
    bool empty() const noexcept {
        return m_nb_elements == 0;
    }
    
    size_type size() const noexcept {
        return m_nb_elements;
    }
    
    size_type max_size() const noexcept {
        return std::numeric_limits<IndexSizeT>::max();
    }
    
    size_type max_key_size() const noexcept {
        return MAX_KEY_SIZE;
    }
    
    void shrink_to_fit() {
        clear_old_erased_values();
        value_container<T>::shrink_to_fit();
        
        rehash_impl(size_type(std::ceil(float(size())/max_load_factor())));
    }
    
    /*
     * Modifiers
     */
    void clear() noexcept {
        value_container<T>::clear();
        
        for(auto& bucket: m_buckets_data) {
            bucket.clear();
        }
        
        m_nb_elements = 0;
    }
    
    
    
    template<class... ValueArgs>
    std::pair<iterator, bool> emplace(const CharT* key, size_type key_size, ValueArgs&&... value_args) {
        const std::size_t hash = hash_key(key, key_size);
        std::size_t ibucket = bucket_for_hash(hash);
        
        auto it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
        if(it_find.second) {
            return std::make_pair(iterator(m_buckets_data.begin() + ibucket, it_find.first, this), false);
        }
        
        if(grow_on_high_load()) {
            ibucket = bucket_for_hash(hash);
            it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
        }
        
        return emplace_impl(ibucket, it_find.first, key, key_size, std::forward<ValueArgs>(value_args)...);
    }
    
    template<class M>
    std::pair<iterator, bool> insert_or_assign(const CharT* key, size_type key_size, M&& obj) { 
        auto it = emplace(key, key_size, std::forward<M>(obj));
        if(!it.second) {
            it.first.value() = std::forward<M>(obj);
        }
        
        return it;
    }
    
    
    
    iterator erase(const_iterator pos) {
        if(shoud_clear_old_erased_values()) {
            clear_old_erased_values();
        }
        
        return erase_from_bucket(mutable_iterator(pos));
    }
    
    iterator erase(const_iterator first, const_iterator last) {
        if(first == last) {
            return mutable_iterator(first);
        }
        
        /**
         * When erasing an element from a bucket with erase_from_bucket, it invalidates all the iterators 
         * in the array bucket of the element (m_array_bucket_iterator) but not the iterators of the buckets 
         * itself (m_buckets_iterator).
         * 
         * So first erase all the values between first and last which are not part of the bucket of last,
         * and then erase carefully the values in last's bucket.
         */
        auto to_delete = mutable_iterator(first);
        while(to_delete.m_buckets_iterator != last.m_buckets_iterator) {
            to_delete = erase_from_bucket(to_delete);
        }
        
        std::size_t nb_elements_until_last = std::distance(to_delete.m_array_bucket_iterator, 
                                                           last.m_array_bucket_iterator);
        while(nb_elements_until_last > 0) {
            to_delete = erase_from_bucket(to_delete);
            nb_elements_until_last--;
        }
        
        if(shoud_clear_old_erased_values()) {
            clear_old_erased_values();
        }
        
        return to_delete;
    }
    
    
    
    size_type erase(const CharT* key, size_type key_size) {
        return erase(key, key_size, hash_key(key, key_size));
    }
    
    size_type erase(const CharT* key, size_type key_size, std::size_t hash) {
        if(shoud_clear_old_erased_values()) {
            clear_old_erased_values();
        }
        
        const std::size_t ibucket = bucket_for_hash(hash);
        if(m_buckets[ibucket].erase(key, key_size)) {
            m_nb_elements--;
            return 1;
        }
        else {
            return 0;
        }
    }
    
    
    
    void swap(array_hash& other) {
        using std::swap;
        
        swap(static_cast<value_container<T>&>(*this), static_cast<value_container<T>&>(other));
        swap(static_cast<Hash&>(*this), static_cast<Hash&>(other));
        swap(static_cast<GrowthPolicy&>(*this), static_cast<GrowthPolicy&>(other));
        swap(m_buckets_data, other.m_buckets_data);
        swap(m_buckets, other.m_buckets);
        swap(m_nb_elements, other.m_nb_elements);
        swap(m_max_load_factor, other.m_max_load_factor);
        swap(m_load_threshold, other.m_load_threshold);
    }
    
    /*
     * Lookup
     */
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    U& at(const CharT* key, size_type key_size) {
        return at(key, key_size, hash_key(key, key_size));      
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    const U& at(const CharT* key, size_type key_size) const {
        return at(key, key_size, hash_key(key, key_size));      
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    U& at(const CharT* key, size_type key_size, std::size_t hash) {
        return const_cast<U&>(static_cast<const array_hash*>(this)->at(key, key_size, hash));
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    const U& at(const CharT* key, size_type key_size, std::size_t hash) const {
        const std::size_t ibucket = bucket_for_hash(hash);
        
        auto it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
        if(it_find.second) {
            return this->m_values[it_find.first.value()];
        }
        else {
            throw std::out_of_range("Couldn't find key.");
        }        
    }
    
    
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    U& access_operator(const CharT* key, size_type key_size) {
        const std::size_t hash = hash_key(key, key_size);
        std::size_t ibucket = bucket_for_hash(hash);
        
        auto it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
        if(it_find.second) {
            return this->m_values[it_find.first.value()];
        }
        else {
            if(grow_on_high_load()) {
                ibucket = bucket_for_hash(hash);
                it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
            }
            
            return emplace_impl(ibucket, it_find.first, key, key_size, U{}).first.value();
        }
    }
    
    
    
    size_type count(const CharT* key, size_type key_size) const {
        return count(key, key_size, hash_key(key, key_size));
    }
    
    size_type count(const CharT* key, size_type key_size, std::size_t hash) const {
        const std::size_t ibucket = bucket_for_hash(hash);
        
        auto it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
        if(it_find.second) {
            return 1;
        }
        else {
            return 0;
        }
    }
    
    
    
    iterator find(const CharT* key, size_type key_size) {
        return find(key, key_size, hash_key(key, key_size));
    }
    
    const_iterator find(const CharT* key, size_type key_size) const {
        return find(key, key_size, hash_key(key, key_size));
    }
    
    iterator find(const CharT* key, size_type key_size, std::size_t hash) {
        const std::size_t ibucket = bucket_for_hash(hash);
        
        auto it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
        if(it_find.second) {
            return iterator(m_buckets_data.begin() + ibucket, it_find.first, this);
        }
        else {
            return end();
        }
    }
    
    const_iterator find(const CharT* key, size_type key_size, std::size_t hash) const {
        const std::size_t ibucket = bucket_for_hash(hash);
        
        auto it_find = m_buckets[ibucket].find_or_end_of_bucket(key, key_size);
        if(it_find.second) {
            return const_iterator(m_buckets_data.cbegin() + ibucket, it_find.first, this);
        }
        else {
            return cend();
        }
    }
    
    
    
    std::pair<iterator, iterator> equal_range(const CharT* key, size_type key_size) {
        return equal_range(key, key_size, hash_key(key, key_size));
    }
    
    std::pair<const_iterator, const_iterator> equal_range(const CharT* key, size_type key_size) const {
        return equal_range(key, key_size, hash_key(key, key_size));
    }
    
    std::pair<iterator, iterator> equal_range(const CharT* key, size_type key_size, std::size_t hash) {
        iterator it = find(key, key_size, hash);
        return std::make_pair(it, (it == end())?it:std::next(it));
    }
    
    std::pair<const_iterator, const_iterator> equal_range(const CharT* key, size_type key_size, 
                                                          std::size_t hash) const 
    {
        const_iterator it = find(key, key_size, hash);
        return std::make_pair(it, (it == cend())?it:std::next(it));
    }
    
    /*
     * Bucket interface 
     */
    size_type bucket_count() const {
        return m_buckets_data.size();
    }
    
    size_type max_bucket_count() const { 
        return std::min(GrowthPolicy::max_bucket_count(), m_buckets_data.max_size());
    }
    
    
    /*
     *  Hash policy 
     */
    float load_factor() const {
        if(bucket_count() == 0) {
            return 0;
        }

        return float(m_nb_elements) / float(bucket_count());
    }
    
    float max_load_factor() const {
        return m_max_load_factor;
    }
    
    void max_load_factor(float ml) {
        m_max_load_factor = std::max(0.1f, ml);
        m_load_threshold = size_type(float(bucket_count())*m_max_load_factor);
    }
    
    void rehash(size_type count) {
        count = std::max(count, size_type(std::ceil(float(size())/max_load_factor())));
        rehash_impl(count);
    }
    
    void reserve(size_type count) {
        rehash(size_type(std::ceil(float(count)/max_load_factor())));
    }
    
    /*
     * Observers
     */
    hasher hash_function() const { 
        return static_cast<const hasher&>(*this); 
    }
    
    // TODO add support for statefull KeyEqual
    key_equal key_eq() const { 
        return KeyEqual(); 
    }
    
    /*
     * Other
     */
    iterator mutable_iterator(const_iterator it) noexcept {
        auto it_bucket = m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), it.m_buckets_iterator);
        return iterator(it_bucket, it.m_array_bucket_iterator, this);
    }
    
    template<class Serializer>
    void serialize(Serializer& serializer) const {
        serialize_impl(serializer);
    }

    template<class Deserializer>
    void deserialize(Deserializer& deserializer, bool hash_compatible) {
        deserialize_impl(deserializer, hash_compatible);
    }
    
private:
    std::size_t hash_key(const CharT* key, size_type key_size) const {
        return Hash::operator()(key, key_size);
    }
    
    std::size_t bucket_for_hash(std::size_t hash) const {
        return GrowthPolicy::bucket_for_hash(hash);
    }
    
    /**
     * If there is a mapped_type, the mapped value in m_values is not erased now.
     * It will be erased when the ratio between the size of the map and 
     * the size of the map + the number of deleted values still stored is low enough (see clear_old_erased_values).
     */
    iterator erase_from_bucket(iterator pos) noexcept {
        auto array_bucket_next_it = pos.m_buckets_iterator->erase(pos.m_array_bucket_iterator);
        m_nb_elements--;
        
        if(array_bucket_next_it != pos.m_buckets_iterator->cend()) {
            return iterator(pos.m_buckets_iterator, array_bucket_next_it, this);
        }
        else {
            do {
                ++pos.m_buckets_iterator;
            } while(pos.m_buckets_iterator != m_buckets_data.end() && pos.m_buckets_iterator->empty());
            
            if(pos.m_buckets_iterator != m_buckets_data.end()) {
                return iterator(pos.m_buckets_iterator, pos.m_buckets_iterator->cbegin(), this);
            }
            else {
                return end();
            }
        }
    }
    
    
    template<class U = T, typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    bool shoud_clear_old_erased_values(float /*threshold*/ = DEFAULT_CLEAR_OLD_ERASED_VALUE_THRESHOLD) const {
        return false;
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    bool shoud_clear_old_erased_values(float threshold = DEFAULT_CLEAR_OLD_ERASED_VALUE_THRESHOLD) const {
        if(this->m_values.size() == 0) {
            return false;
        }
        
        return float(m_nb_elements)/float(this->m_values.size()) < threshold;
    }
    
    template<class U = T, typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    void clear_old_erased_values() {
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    void clear_old_erased_values() {
        static_assert(std::is_nothrow_move_constructible<U>::value || 
                      std::is_copy_constructible<U>::value, 
                      "mapped_value must be either copy constructible or nothrow move constructible.");

        if(m_nb_elements == this->m_values.size()) {
            return;
        }
        
        std::vector<T> new_values;
        new_values.reserve(size());
        
        for(auto it = begin(); it != end(); ++it) {
            new_values.push_back(std::move_if_noexcept(it.value()));
        }
        
        
        IndexSizeT ivalue = 0;
        for(auto it = begin(); it != end(); ++it) {
            auto it_array_bucket = it.m_buckets_iterator->mutable_iterator(it.m_array_bucket_iterator);
            it_array_bucket.set_value(ivalue);
            ivalue++;
        }
        
        new_values.swap(this->m_values);
        tsl_ah_assert(m_nb_elements == this->m_values.size());
    }
    
    /**
     * Return true if a rehash occured.
     */
    bool grow_on_high_load() {
        if(size() >= m_load_threshold) {
            rehash_impl(GrowthPolicy::next_bucket_count());
            return true;
        }
        
        return false;
    }
    
    template<class... ValueArgs, class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    std::pair<iterator, bool> emplace_impl(std::size_t ibucket, typename array_bucket::const_iterator end_of_bucket, 
                                          const CharT* key, size_type key_size, ValueArgs&&... value_args) 
    {
        if(this->m_values.size() >= max_size()) {
            // Try to clear old erased values lingering in m_values. Throw if it doesn't change anything.
            clear_old_erased_values();
            if(this->m_values.size() >= max_size()) {
                throw std::length_error("Can't insert value, too much values in the map.");
            }
        }
        
        if(this->m_values.size() == this->m_values.capacity()) {
            this->m_values.reserve(std::size_t(float(this->m_values.size()) * value_container<T>::VECTOR_GROWTH_RATE));
        }
        
        
        this->m_values.emplace_back(std::forward<ValueArgs>(value_args)...);
        
        try {
            auto it = m_buckets[ibucket].append(end_of_bucket, key, key_size, IndexSizeT(this->m_values.size() - 1));
            m_nb_elements++;
            
            return std::make_pair(iterator(m_buckets_data.begin() + ibucket, it, this), true);
        } catch(...) {
            // Rollback
            this->m_values.pop_back();
            throw;
        }
    }
    
    template<class U = T, typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    std::pair<iterator, bool> emplace_impl(std::size_t ibucket, typename array_bucket::const_iterator end_of_bucket, 
                                          const CharT* key, size_type key_size) 
    {
        if(m_nb_elements >= max_size()) {
            throw std::length_error("Can't insert value, too much values in the map.");
        }
        
        auto it = m_buckets[ibucket].append(end_of_bucket, key, key_size);
        m_nb_elements++;
        
        return std::make_pair(iterator(m_buckets_data.begin() + ibucket, it, this), true);
    }
    
    void rehash_impl(size_type bucket_count) {
        GrowthPolicy new_growth_policy(bucket_count);
        if(bucket_count == this->bucket_count()) {
            return;
        }
        
        
        if(shoud_clear_old_erased_values(REHASH_CLEAR_OLD_ERASED_VALUE_THRESHOLD)) {
            clear_old_erased_values();
        }
        
        
        std::vector<std::size_t> required_size_for_bucket(bucket_count, 0);
        std::vector<std::size_t> bucket_for_ivalue(size(), 0);
        
        std::size_t ivalue = 0;
        for(auto it = begin(); it != end(); ++it) {
            const std::size_t hash = hash_key(it.key(), it.key_size());
            const std::size_t ibucket = new_growth_policy.bucket_for_hash(hash);
            
            bucket_for_ivalue[ivalue] = ibucket;
            required_size_for_bucket[ibucket] += array_bucket::entry_required_bytes(it.key_size());
            ivalue++;
        }
        
        
        
        
        std::vector<array_bucket> new_buckets;
        new_buckets.reserve(bucket_count);
        for(std::size_t ibucket = 0; ibucket < bucket_count; ibucket++) {
            new_buckets.emplace_back(required_size_for_bucket[ibucket]);
        }
        
        
        ivalue = 0;
        for(auto it = begin(); it != end(); ++it) {
            const std::size_t ibucket = bucket_for_ivalue[ivalue];
            append_iterator_in_reserved_bucket_no_check(new_buckets[ibucket], it);
            
            ivalue++;
        }
        
        
        using std::swap;
        swap(static_cast<GrowthPolicy&>(*this), new_growth_policy);
        
        m_buckets_data.swap(new_buckets);
        m_buckets = !m_buckets_data.empty()?m_buckets_data.data():
                                            static_empty_bucket_ptr();
        
        // Call max_load_factor to change m_load_threshold
        max_load_factor(m_max_load_factor);
    }
    
    template<class U = T, typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    void append_iterator_in_reserved_bucket_no_check(array_bucket& bucket, iterator it) {
        bucket.append_in_reserved_bucket_no_check(it.key(), it.key_size());
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    void append_iterator_in_reserved_bucket_no_check(array_bucket& bucket, iterator it) {
        bucket.append_in_reserved_bucket_no_check(it.key(), it.key_size(), it.value_position());
    }
    
    
    
    /**
     * On serialization the values of each bucket (if has_mapped_type is true) are serialized 
     * next to the bucket. The potential old erased values in value_container are thus not serialized.
     * 
     * On deserialization, when hash_compatible is true, we reaffect the value index (IndexSizeT) of each
     * bucket with set_value as the position of each value is no more the same in value_container compared
     * to when they were serialized.
     * 
     * It's done this way as we can't call clear_old_erased_values() because we want the serialize 
     * method to remain const and we don't want to serialize/deserialize old erased values. As we may
     * not serialize all the values in value_container, the values we keep can change of index.
     * We thus have to modify the value indexes in the buckets.
     */
    template<class Serializer>
    void serialize_impl(Serializer& serializer) const {
        const slz_size_type version = SERIALIZATION_PROTOCOL_VERSION;
        serializer(version);
        
        const slz_size_type bucket_count = m_buckets_data.size();
        serializer(bucket_count);
        
        const slz_size_type nb_elements = m_nb_elements;
        serializer(nb_elements);
        
        const float max_load_factor = m_max_load_factor;
        serializer(max_load_factor);
        
        for(const array_bucket& bucket: m_buckets_data) {
            bucket.serialize(serializer);
            serialize_bucket_values(serializer, bucket);
        }
    }
    
    template<class Serializer, class U = T,
             typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    void serialize_bucket_values(Serializer& /*serializer*/, const array_bucket& /*bucket*/) const {
    }
    
    template<class Serializer, class U = T,
             typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    void serialize_bucket_values(Serializer& serializer, const array_bucket& bucket) const {
        for(auto it = bucket.begin(); it != bucket.end(); ++it) {
            serializer(this->m_values[it.value()]);
        }
    }

    template<class Deserializer>
    void deserialize_impl(Deserializer& deserializer, bool hash_compatible) {
        tsl_ah_assert(m_buckets_data.empty()); // Current hash table must be empty
        
        const slz_size_type version = deserialize_value<slz_size_type>(deserializer);
        // For now we only have one version of the serialization protocol. 
        // If it doesn't match there is a problem with the file.
        if(version != SERIALIZATION_PROTOCOL_VERSION) {
            throw std::runtime_error("Can't deserialize the array_map/set. The protocol version header is invalid.");
        }
        
        const slz_size_type bucket_count_ds = deserialize_value<slz_size_type>(deserializer);
        const slz_size_type nb_elements = deserialize_value<slz_size_type>(deserializer);
        const float max_load_factor = deserialize_value<float>(deserializer);
        
        
        m_nb_elements = numeric_cast<IndexSizeT>(nb_elements, "Deserialized nb_elements is too big.");
        
        size_type bucket_count = numeric_cast<size_type>(bucket_count_ds, "Deserialized bucket_count is too big.");
        GrowthPolicy::operator=(GrowthPolicy(bucket_count));
        
        
        this->max_load_factor(max_load_factor);
        value_container<T>::reserve(m_nb_elements);
        
        
        if(hash_compatible) {
            if(bucket_count != bucket_count_ds) {
                throw std::runtime_error("The GrowthPolicy is not the same even though hash_compatible is true.");
            }

            m_buckets_data.reserve(bucket_count);
            for(size_type i = 0; i < bucket_count; i++) {
                m_buckets_data.push_back(array_bucket::deserialize(deserializer));
                deserialize_bucket_values(deserializer, m_buckets_data.back());
            }
        }
        else {
            m_buckets_data.resize(bucket_count);
            for(size_type i = 0; i < bucket_count; i++) {
                // TODO use buffer to avoid reallocation on each deserialization.
                array_bucket bucket = array_bucket::deserialize(deserializer);
                deserialize_bucket_values(deserializer, bucket);
                
                for(auto it_val = bucket.cbegin(); it_val != bucket.cend(); ++it_val) {
                    const std::size_t ibucket = bucket_for_hash(hash_key(it_val.key(), it_val.key_size()));
                    
                    auto it_find = m_buckets_data[ibucket].find_or_end_of_bucket(it_val.key(), it_val.key_size());
                    if(it_find.second) {
                        throw std::runtime_error("Error on deserialization, the same key is presents multiple times.");
                    }
                    
                    append_array_bucket_iterator_in_bucket(m_buckets_data[ibucket], it_find.first, it_val);
                }
            }
        }
        
        m_buckets = m_buckets_data.data();
        
        
        if(load_factor() > this->max_load_factor()) {
            throw std::runtime_error("Invalid max_load_factor. Check that the serializer and deserializer supports "
                                     "floats correctly as they can be converted implicitely to ints.");
        }
    }
    
    template<class Deserializer, class U = T,
             typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    void deserialize_bucket_values(Deserializer& /*deserializer*/, array_bucket& /*bucket*/) {
    }
    
    template<class Deserializer, class U = T,
             typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    void deserialize_bucket_values(Deserializer& deserializer, array_bucket& bucket) {
        for(auto it = bucket.begin(); it != bucket.end(); ++it) {
            this->m_values.emplace_back(deserialize_value<U>(deserializer));
            
            tsl_ah_assert(this->m_values.size() - 1 <= std::numeric_limits<IndexSizeT>::max());
            it.set_value(static_cast<IndexSizeT>(this->m_values.size() - 1));
        }
    }
    
    template<class U = T, typename std::enable_if<!has_mapped_type<U>::value>::type* = nullptr>
    void append_array_bucket_iterator_in_bucket(array_bucket& bucket, 
                                                typename array_bucket::const_iterator end_of_bucket, 
                                                typename array_bucket::const_iterator it_val) 
    {
        bucket.append(end_of_bucket, it_val.key(), it_val.key_size());
    }
    
    template<class U = T, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    void append_array_bucket_iterator_in_bucket(array_bucket& bucket, 
                                                typename array_bucket::const_iterator end_of_bucket, 
                                                typename array_bucket::const_iterator it_val) 
    {
        bucket.append(end_of_bucket, it_val.key(), it_val.key_size(), it_val.value());
    }
    
public:    
    static const size_type DEFAULT_INIT_BUCKET_COUNT = 0;
    static constexpr float DEFAULT_MAX_LOAD_FACTOR = 2.0f;
    static const size_type MAX_KEY_SIZE = array_bucket::MAX_KEY_SIZE;
    
private:
    /**
     * Protocol version currenlty used for serialization.
     */
    static const slz_size_type SERIALIZATION_PROTOCOL_VERSION = 1;
    
    
    static constexpr float DEFAULT_CLEAR_OLD_ERASED_VALUE_THRESHOLD = 0.6f;
    static constexpr float REHASH_CLEAR_OLD_ERASED_VALUE_THRESHOLD = 0.9f;
    
    
    /**
     * Return an always valid pointer to a static empty array_bucket.
     */            
    array_bucket* static_empty_bucket_ptr() {
        static array_bucket empty_bucket;
        return &empty_bucket;
    }
    
private:    
    std::vector<array_bucket> m_buckets_data;
    
    /**
     * Points to m_buckets_data.data() if !m_buckets_data.empty() otherwise points to static_empty_bucket_ptr.
     * This variable is useful to avoid the cost of checking if m_buckets_data is empty when trying 
     * to find an element.
     * 
     * TODO Remove m_buckets_data and only use a pointer+size instead of a pointer+vector to save some space in the array_hash object.
     */
    array_bucket* m_buckets;
    
    IndexSizeT m_nb_elements;
    float m_max_load_factor;
    size_type m_load_threshold;
};

} // end namespace detail_array_hash
} //end namespace tsl

#endif