File: manual.html

package info (click to toggle)
spades 3.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 12,080 kB
  • ctags: 26,239
  • sloc: cpp: 117,391; ansic: 28,438; python: 5,716; perl: 3,139; pascal: 348; makefile: 270; xml: 167; java: 158; sh: 67
file content (1214 lines) | stat: -rw-r--r-- 59,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
<html>
<head>
    <title>SPAdes 3.9.1 Manual</title>
    <style type="text/css">
        .code {
            background-color: lightgray;
        }
    </style>
</head>
<body>
<h1>SPAdes 3.9.1 Manual</h1>

1. <a href="#sec1">About SPAdes</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;1.1. <a href="#sec1.1">Supported data types</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;1.2. <a href="#sec1.2">SPAdes pipeline</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;1.3. <a href="#sec1.3">SPAdes performance</a><br>
2. <a href="#sec2">Installation</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;2.1. <a href="#sec2.1">Downloading SPAdes Linux binaries</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;2.2. <a href="#sec2.2">Downloading SPAdes binaries for Mac</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;2.3. <a href="#sec2.3">Downloading and compiling SPAdes source code</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;2.4. <a href="#sec2.4">Verifying your installation</a><br>
3. <a href="#sec3">Running SPAdes</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;3.1. <a href="#sec3.1">SPAdes input</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;3.2. <a href="#sec3.2">SPAdes command line options</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;3.3. <a href="#sec3.3">Assembling IonTorrent reads</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;3.4. <a href="#sec3.4">Assembling long Illumina paired reads (2x150 and 2x250)</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;3.5. <a href="#sec3.5">SPAdes output</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;3.6. <a href="#sec3.6">plasmidSPAdes output</a><br>
&nbsp;&nbsp;&nbsp;&nbsp;3.7. <a href="#sec3.7">Assembly evaluation</a><br>
4. <a href="#sec4">Citation</a><br>
5. <a href="#sec5">Feedback and bug reports</a><br>
<br>

<a name="sec1"></a>
<h2>1. About SPAdes</h2>
<p>
    SPAdes &ndash; St. Petersburg genome assembler &ndash; is intended for both standard isolates and single-cell MDA bacteria assemblies. This manual will help you to install and run SPAdes. 
SPAdes version 3.9.1 was released under GPLv2 on December 4, 2016 and can be downloaded from  <a href="http://cab.spbu.ru/software/spades/" target="_blank">http://cab.spbu.ru/software/spades/</a>.

<a name="sec1.1"></a>
<h3>1.1 Supported data types</h3>
<p>
    The current version of SPAdes works with Illumina or IonTorrent reads and is capable of providing hybrid assemblies using PacBio, Oxford Nanopore and Sanger reads. You can also provide additional contigs that will be used as long reads.
<p>
    Version 3.9.1 of SPAdes supports paired-end reads, mate-pairs and unpaired reads. SPAdes can take as input several paired-end and mate-pair libraries simultaneously. Note, that SPAdes was initially designed for small genomes. It was tested on single-cell and standard bacterial and fungal data sets. SPAdes is not intended for larger genomes (e.g. mammalian size genomes). For such purposes you can use it at your own risk.
<p>
    SPAdes 3.9.1 includes the following additional pipelines:
    <ul>
        <li>dipSPAdes &ndash; a module for assembling highly polymorphic diploid genomes (see <a href="dipspades_manual.html" target="_blank">dipSPAdes manual</a>).</li>
        <li>metaSPAdes &ndash; a pipeline for metagenomic data sets (see <a href="#meta">metaSPAdes options</a>). </li>
        <li>plasmidSPAdes &ndash; a pipeline for extracting and assembling plasmids from WGS data sets (see <a href="#plasmid">plasmidSPAdes options</a>).</li>
        <li>rnaSPAdes &ndash; a <i>de novo</i> transcriptome assembler from RNA-Seq data (see <a href="rnaspades_manual.html" target="_blank">rnaSPAdes manual</a>).</li>
        <li>truSPAdes &ndash; a module for TruSeq barcode assembly (see <a href="truspades_manual.html" target="_blank">truSPAdes manual</a>). </li>
    </ul>

<a name="sec1.2"></a>
<h3>1.2 SPAdes pipeline</h3>
<p>
SPAdes comes in several separate modules:
    <ul>
        <li> <a href="http://bioinf.spbau.ru/en/spades/bayeshammer" target="_blank">BayesHammer</a> &ndash; read error correction tool for Illumina reads, which works well on both single-cell and standard data sets. </li>
        <li> IonHammer &ndash; read error correction tool for IonTorrent data, which also works on both types of data. </li>
        <li> SPAdes &ndash; iterative short-read genome assembly module; values of K are selected automatically based on the read length and data set type. </li>
        <li> MismatchCorrector &ndash; a tool which improves mismatch and short indel rates in resulting contigs and scaffolds; this module uses the <a href="http://bio-bwa.sourceforge.net" target="_blank">BWA</a> tool [<a href="http://www.ncbi.nlm.nih.gov/pubmed/19451168" target="_blank">Li H. and Durbin R., 2009</a>]; MismatchCorrector is turned off by default, but we recommend to turn it on (see <a href="#correctoropt">SPAdes options section</a>). </li>
    </ul>
<p>
    We recommend to run SPAdes with BayesHammer/IonHammer to obtain high-quality assemblies. However, if you use your own read correction tool, it is possible to turn error correction module off. It is also possible to use only the read error correction stage, if you wish to use another assembler. See the <a href="#pipelineopt">SPAdes options section</a>.


<a name="sec1.3"></a>
<h3>1.3 SPAdes' performance</h3>
<p>
    In this section we give approximate data about SPAdes' performance on two data sets:
    <ul>
        <li> <a href="http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc/" target="_blank">Standard isolate <i>E. coli</i></a>; 6.2Gb, 28M reads, 2x100bp, insert size ~ 215bp </li>
        <li> <a href="http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_sc/" target="_blank">MDA single-cell <i>E. coli</i></a>; 6.3 Gb, 29M reads, 2x100bp, insert size ~ 270bp </li>
    </ul>
<p>
    We ran SPAdes with default parameters using 16 threads on a server with Intel Xeon 2.27GHz processors. BayesHammer runs in approximately 30-40 minutes and takes up to 8Gb of RAM to perform read error correction on each data set. Assembly takes about 15 minutes for the <i>E. coli</i> isolate data set and 30 minutes for the <i>E. coli</i> single-cell data set. Both data sets require about 9Gb of RAM (see notes below). MismatchCorrector runs for about 25 minutes on both data sets, and requires less than 2Gb of RAM. All modules also require additional disk space for storing results (corrected reads, contigs, etc) and temporary files. See the table below for more precise values.

<p>
    <table border="1" cellpadding="4" cellspacing="0">
        <tr>
            <td align="right"> Data set &nbsp; </td>
            <td colspan="3" align="center"> <i>E. coli</i> isolate </td> 
            <td colspan="3" align="center"> <i>E. coli</i> single-cell </td>
        </tr>

        <tr>
            <td> Stage </td>
            <td align="center" width="110">  Time  </td> 
            <td align="center" width="110">  Peak RAM <br> usage (Gb)  </td>
            <td align="center" width="110">  Additional <br> disk space (Gb)  </td>
            <td align="center" width="110">  Time </td> 
            <td align="center" width="110">  Peak RAM <br> usage (Gb)  </td>
            <td align="center" width="110">  Additional <br> disk space (Gb) </td>
        </tr>

        <tr>
            <td> BayesHammer </td>
            <td align="center"> 34m </td>
            <td align="center"> 7.7 </td>
            <td align="center"> 8.4 </td>
            <td align="center"> 40m </td>
            <td align="center"> 7.5 </td>
            <td align="center"> 8.8 </td>
        </tr>

        <tr>
            <td> SPAdes </td>
            <td align="center"> 16m </td>
            <td align="center"> 8.6 </td>
            <td align="center"> 1.6 </td>
            <td align="center"> 28m </td>
            <td align="center"> 8.6 </td>
            <td align="center"> 2.7 </td>
        </tr>

        <tr>
            <td> MismatchCorrector </td>
            <td align="center"> 22m </td>
            <td align="center"> 1.8 </td>
            <td align="center"> 21.8 </td>
            <td align="center"> 26m </td>
            <td align="center"> 1.8 </td>
            <td align="center"> 22.9 </td>
        </tr>

        <tr>
            <td> Whole pipeline </td>
            <td align="center"> 1h 12m </td>
            <td align="center"> 8.6 </td>
            <td align="center"> 24.2 </td>
            <td align="center"> 1h 34m </td>
            <td align="center"> 8.6 </td>
            <td align="center"> 25.5 </td>
        </tr>
    </table>

<p>
    Notes:
    <ul>
        <li> Running SPAdes without preliminary read error correction (e.g. without BayesHammer or IonHammer) will likely require more time and memory. </li>
        <li> Each module removes its temporary files as soon as it finishes. </li>
        <li> SPAdes uses 512 Mb per thread for buffers, which results in higher memory consumption. If you set memory limit manually, SPAdes will use smaller buffers and thus less RAM. </li>
        <li> Performance statistics is given for SPAdes version 3.9.1. </li>
    </ul>


<a name="sec2"></a>
<h2>2. Installation</h2>
<p>

    SPAdes requires a 64-bit Linux system or Mac OS and Python (supported versions are 2.4, 2.5, 2.6, 2.7, 3.2, 3.3, 3.4 and 3.5) to be pre-installed on it. To obtain SPAdes you can either download binaries or download source code and compile it yourself.

<a name="sec2.1"></a>
<h3>2.1 Downloading SPAdes Linux binaries</h3>

<p>
    To download <a href="http://cab.spbu.ru/files/release3.9.1/SPAdes-3.9.1-Linux.tar.gz">SPAdes Linux binaries</a> and extract them, go to the directory in which you wish SPAdes to be installed and run:

<pre  class="code">
<code>
    wget http://cab.spbu.ru/files/release3.9.1/SPAdes-3.9.1-Linux.tar.gz
    tar -xzf SPAdes-3.9.1-Linux.tar.gz
    cd SPAdes-3.9.1-Linux/bin/
</code>
</pre>

<p>
    In this case you do not need to run any installation scripts &ndash; SPAdes is ready to use. The following files will be placed in the <code>bin</code> directory:
    <ul>
        <li><code>spades.py</code>  (main executable script)</li>
        <li><code>dipspades.py</code>  (main executable script for <a href="dipspades_manual.html" target="_blank">dipSPAdes</a>)</li>
        <li><code>metaspades.py</code>  (main executable script for <a href="#meta">metaSPAdes</a>)</li>
        <li><code>plasmidspades.py</code>  (main executable script for <a href="#plasmid">plasmidSPAdes</a>)</li>
        <li><code>rnaspades.py</code>  (main executable script for <a href="rnaspades_manual.html" target="_blank">rnaSPAdes</a>)</li>
        <li><code>truspades.py</code>  (main executable script for <a href="truspades_manual.html" target="_blank">truSPAdes</a>)</li>
        <li><code>hammer</code>  (read error correcting module for Illumina reads)</li>
        <li><code>ionhammer</code>  (read error correcting module for IonTorrent reads)</li>
        <li><code>spades</code>  (assembly module)</li>
        <li><code>bwa-spades</code>  (<a href="http://bio-bwa.sourceforge.net" target="_blank">BWA</a> alignment module which is required for mismatch correction)</li>
        <li><code>corrector</code>  (mismatch correction module)</li>
        <li><code>dipspades</code>  (assembly module for highly polymorphic diploid genomes)</li>
        <li><code>scaffold_correction</code>  (executable used in truSPAdes pipeline)</li>
    </ul>

<p>
    We also suggest adding SPAdes installation directory to the <code>PATH</code> variable.
 
<a name="sec2.2"></a>
<h3>2.2 Downloading SPAdes binaries for Mac</h3>

<p>
    To obtain <a href="http://cab.spbu.ru/files/release3.9.1/SPAdes-3.9.1-Darwin.tar.gz">SPAdes binaries for Mac</a>, go to the directory in which you wish SPAdes to be installed and run:

<pre  class="code">
<code>
    curl http://cab.spbu.ru/files/release3.9.1/SPAdes-3.9.1-Darwin.tar.gz -o SPAdes-3.9.1-Darwin.tar.gz
    tar -zxf SPAdes-3.9.1-Darwin.tar.gz
    cd SPAdes-3.9.1-Darwin/bin/
</code>
</pre>

<p>
    Just as in Linux, SPAdes is ready to use and no further installation steps are required. You will get the same files in the <code>bin</code> directory:
    <ul>
        <li><code>spades.py</code>  (main executable script)</li>
        <li><code>dipspades.py</code>  (main executable script for <a href="dipspades_manual.html" target="_blank">dipSPAdes</a>)</li>
        <li><code>metaspades.py</code>  (main executable script for <a href="#meta">metaSPAdes</a>)</li>
        <li><code>plasmidspades.py</code>  (main executable script for <a href="#plasmid">plasmidSPAdes</a>)</li>
        <li><code>rnaspades.py</code>  (main executable script for <a href="rnaspades_manual.html" target="_blank">rnaSPAdes</a>)</li>
        <li><code>truspades.py</code>  (main executable script for <a href="truspades_manual.html" target="_blank">truSPAdes</a>)</li>
        <li><code>hammer</code>  (read error correcting module for Illumina reads)</li>
        <li><code>ionhammer</code>  (read error correcting module for IonTorrent reads)</li>
        <li><code>spades</code>  (assembly module)</li>
        <li><code>bwa-spades</code>  (<a href="http://bio-bwa.sourceforge.net" target="_blank">BWA</a> alignment module which is required for mismatch correction)</li>
        <li><code>corrector</code>  (mismatch correction module)</li>
        <li><code>dipspades</code>  (assembly module for highly polymorphic diploid genomes)</li>
        <li><code>scaffold_correction</code>  (executable used in truSPAdes pipeline)</li>
    </ul>

<p>
    We also suggest adding SPAdes installation directory to the <code>PATH</code> variable.
 

<a name="sec2.3"></a>
<h3>2.3 Downloading and compiling SPAdes source code</h3>
<p>
    If you wish to compile SPAdes by yourself you will need the following libraries to be pre-installed:
    <ul>
        <li>g++ (version 4.7 or higher)</li>
        <li>cmake (version 2.8.12 or higher)</li>
        <li>zlib</li>
        <li>libbz2</li>
    </ul>

<p>
    If you meet these requirements, you can download the <a href="http://cab.spbu.ru/files/release3.9.1/SPAdes-3.9.1.tar.gz">SPAdes source code</a>: 

<pre class="code">
<code>
    wget http://cab.spbu.ru/files/release3.9.1/SPAdes-3.9.1.tar.gz
    tar -xzf SPAdes-3.9.1.tar.gz
    cd SPAdes-3.9.1
</code>
</pre>

<p>
    and build it with the following script:

<pre class="code">
<code>
    ./spades_compile.sh
</code>
</pre>

<p> 
    SPAdes will be built in the directory <code>./bin</code>. If you wish to install SPAdes into another directory, you can specify full path of destination folder by running the following command in <code>bash</code> or <code>sh</code>:

<pre class="code">
<code>
    PREFIX=&lt;destination_dir> ./spades_compile.sh
</code>
</pre>

<p>
    for example:

<pre class="code">
<code>
    PREFIX=/usr/local ./spades_compile.sh
</code>
</pre>

<p>
   which will install SPAdes into <code>/usr/local/bin</code>.
    
<p>
    After installation you will get the same files in <code>./bin</code> (or <code>&lt;destination_dir>/bin</code> if you specified PREFIX) directory:
    <ul>
        <li><code>spades.py</code>  (main executable script)</li>
        <li><code>dipspades.py</code>  (main executable script for <a href="dipspades_manual.html" target="_blank">dipSPAdes</a>)</li>
        <li><code>metaspades.py</code>  (main executable script for <a href="#meta">metaSPAdes</a>)</li>
        <li><code>plasmidspades.py</code>  (main executable script for <a href="#plasmid">plasmidSPAdes</a>)</li>
        <li><code>rnaspades.py</code>  (main executable script for <a href="rnaspades_manual.html" target="_blank">rnaSPAdes</a>)</li>
        <li><code>truspades.py</code>  (main executable script for <a href="truspades_manual.html" target="_blank">truSPAdes</a>)</li>
        <li><code>hammer</code>  (read error correcting module for Illumina reads)</li>
        <li><code>ionhammer</code>  (read error correcting module for IonTorrent reads)</li>
        <li><code>spades</code>  (assembly module)</li>
        <li><code>bwa-spades</code>  (<a href="http://bio-bwa.sourceforge.net" target="_blank">BWA</a> alignment module which is required for mismatch correction)</li>
        <li><code>corrector</code>  (mismatch correction module)</li>
        <li><code>dipspades</code>  (assembly module for highly polymorphic diploid genomes)</li>
        <li><code>scaffold_correction</code>  (executable used in truSPAdes pipeline)</li>
    </ul>

<p>
    We also suggest adding SPAdes installation directory to the <code>PATH</code> variable.

<a name="sec2.4"></a>
<h3>2.4 Verifying your installation</h3>
<p>
    For testing purposes, SPAdes comes with a toy data set (reads that align to first 1000 bp of <i>E. coli</i>). To try SPAdes on this data set, run:

<pre class="code">
<code>
    &lt;spades installation dir>/spades.py --test
</code>
</pre>

<p>
    If you added SPAdes installation directory to the <code>PATH</code> variable, you can run:

<pre class="code">
<code>
    spades.py --test
</code>
</pre>

    For the simplicity we further assume that SPAdes installation directory is added to the <code>PATH</code> variable.


<p>
    If the installation is successful, you will find the following information at the end of the log:

<pre class="code">
<code>
===== Assembling finished. 

 * Corrected reads are in spades_test/corrected/
 * Assembled contigs are in spades_test/contigs.fasta
 * Assembled scaffolds are in spades_test/scaffolds.fasta

======= SPAdes pipeline finished.

SPAdes log can be found here: /home/andrey/ablab/algorithmic-biology/assembler/spades_test/spades.log

Thank you for using SPAdes!

</code>
</pre>

<a name="sec3"></a>
<h2>3. Running SPAdes</h2>

<a name="sec3.1"></a>
<h3>3.1 SPAdes input</h3>
<p>
    SPAdes takes as input paired-end reads, mate-pairs and single (unpaired) reads in FASTA and FASTQ. For IonTorrent data SPAdes also supports unpaired reads in unmapped BAM format (like the one produced by Torrent Server). However, in order to run read error correction, reads should be in FASTQ or BAM format. Sanger, Oxford Nanopore and PacBio CLR reads can be provided in both formats since SPAdes does not run error correction for these types of data.

<p>
    To run SPAdes 3.9.1 you need at least one library of the following types:
    <ul>
        <li>Illumina paired-end/high-quality mate-pairs/unpaired reads</li>
        <li>IonTorrent paired-end/high-quality mate-pairs/unpaired reads</li>
        <li>PacBio CCS reads</li>
    </ul>
<p>
Illumina and IonTorrent libraries should not be assembled together. All other types of input data are compatible. SPAdes should not be used if only PacBio CLR, Oxford Nanopore, Sanger reads or additional contigs are available.

<p>
SPAdes supports mate-pair only assembly. However, we recommend to use only high-quality mate-pair libraries in this case (e.g. that do not have a paired-end part). We tested mate-pair only pipeline using Illumina Nextera mate-pairs. See more <a href="#hqmp">here</a>.

<p>
    Current version SPAdes also supports Lucigen NxSeq&reg; Long Mate Pair libraries, which always have forward-reverse orientation. If you wish to use Lucigen NxSeq&reg; Long Mate Pair reads, you will need Python <a href="https://pypi.python.org/pypi/regex" target="_blank">regex library</a> to be pre-installed on your machine. You can install it with Python <a href="http://www.pip-installer.org/" target="_blank">pip-installer</a>:
<pre class="code">
<code>
    pip install regex
</code>
</pre>
    or with the <a href="http://peak.telecommunity.com/DevCenter/EasyInstall" target="_blank">Easy Install</a> Python module:
<pre class="code">
<code>
    easy_install regex
</code>
</pre>

<p> Notes:
    <ul>
        <li>It is not recommended to run SPAdes on PacBio reads with low coverage (less than 5).</li>
        <li>We suggest not to run SPAdes on PacBio reads for large genomes.</li>
        <li>SPAdes accepts gzip-compressed files.</li>
    </ul>

<h4>Read-pair libraries</h4>
<p>
    By using command line interface, you can specify up to nine different paired-end libraries, up to nine mate-pair libraries and also up to nine high-quality mate-pair ones. If you wish to use more, you can use <a href="#yaml">YAML data set file</a>. We further refer to paired-end and mate-pair libraries simply as to read-pair libraries.

<p>
    By default, SPAdes assumes that paired-end and high-quality mate-pair reads have forward-reverse (fr) orientation and usual mate-pairs have reverse-forward (rf) orientation. However, different orientations can be set for any library by using SPAdes options. 


<p>
    To distinguish reads in pairs we refer to them as left and right reads. For forward-reverse orientation, the forward reads correspond to the left reads and the reverse reads, to the right. Similarly, in reverse-forward orientation left and right reads correspond to reverse and forward reads, respectively, etc. 

<p>
    Each read-pair library can be stored in several files or several pairs of files. Paired reads can be organized in two different ways:

    <ul>
        <li> In file pairs. In this case left and right reads are placed in different files and go in the same order in respective files. </li>
        <li> In merged files. In this case, the reads are interlaced, so that each right read goes after the corresponding paired left read. </li>
    </ul>

<p>
    For example, Illumina produces paired-end reads in two files: <code>s_1_1_sequence.txt</code> and <code>s_1_2_sequence.txt</code>. If you choose to store reads in file pairs make sure that for every read from <code>s_1_1_sequence.txt</code> the corresponding paired read from <code>s_1_2_sequence.txt</code> is placed in the respective paired file on the same line number. If you choose to use merged files, every read from <code>s_1_1_sequence.txt</code> should be followed by the corresponding paired read from <code>s_1_2_sequence.txt</code>.


<h4>Unpaired (single-read) libraries</h4>
<p>
    By using command line interface, you can specify up to nine different single-read libraries. To input more libraries, you can use <a href="#yaml">YAML data set file</a>.
<p>
    Single librairies are assumed to have high quality and a reasonable coverage. For example, you can provide PacBio CCS reads as a single-read library. Additionally, if you have merged a paired-end library with overlapping read-pairs (for example, using <a href="http://ccb.jhu.edu/software/FLASH/" target="_blank">FLASh</a>), you can provide the resulting reads as a single-read library.
<p>
    Note, that you should not specify PacBio CLR, Sanger reads or additional contigs as single-read libraries, each of them has a separate <a href="#inputdata">option</a>.


<a name="pacbio"></a>
<h4>PacBio and Oxford Nanopore reads</h4>

<p>
    SPAdes can take as an input an unlimited number of PacBio and Oxford Nanopore libraries. 

<p> 
    PacBio CLR and Oxford Nanopore reads are used for hybrid assemblies (e.g. with Illumina or IonTorrent). There is no need to pre-correct this kind of data. SPAdes will use PacBio CLR and Oxford Nanopore reads for gap closure and repeat resolution.

<p> 
    For PacBio you just need to have filtered subreads in FASTQ/FASTA format. Provide these filtered subreads using <code>--pacbio</code> option. Oxford Nanopore reads are provided with <code>--nanopore</code> option.

<p>
    PacBio CCS/Reads of Insert reads or pre-corrected (using third-party software) PacBio CLR / Oxford Nanopore reads can be simply provided as single reads to SPAdes.

<h4>Additional contigs</h4>
<p>
    In case you have contigs of the same genome generated by other assembler(s) and you wish to merge them into SPAdes assembly, you can specify additional contigs using <code>--trusted-contigs</code> or <code>--untrusted-contigs</code>. First option is used when high quality contigs are available. These contigs will be used for graph construction, gap closure and repeat resolution. Second option is used for less reliable contigs that may have more errors or contigs of unknown quality. These contigs will be used only for gap closure and repeat resolution. The number of additional contigs is unlimited.

<p> 
    Note, that SPAdes does not perform assembly using genomes of closely-related species. Only contigs of the same genome should be specified.


<p>

<a name="sec3.2"></a>
<h3>3.2 SPAdes command line options </h3>
<p>
    To run SPAdes from the command line, type 

<pre class="code">
<code>
    spades.py [options] -o &lt;output_dir>
</code>
</pre>
Note that we assume that SPAdes installation directory is added to the <code>PATH</code> variable (provide full path to SPAdes executable otherwise: <code>&lt;spades installation dir>/spades.py</code>). 

<a name="basicopt"></a>
<h4>Basic options</h4>
<p>
    <code>-o &lt;output_dir> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Specify the output directory. Required option.
</p>

<a name="sc"></a>
<p>
    <code>--sc </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;This flag is required for MDA (single-cell) data.
</p>

<a name="meta"></a>
<p>
    <code>--meta </code> &nbsp; (same as <code>metaspades.py</code>)<br>
    &nbsp;&nbsp;&nbsp;&nbsp;This flag is recommended when assembling metagenomic data sets (runs metaSPAdes, see <a href="https://arxiv.org/abs/1604.03071">paper</a> for more details). Currently metaSPAdes supports only a <b>single</b> library which has to be <b>paired-end</b> (we hope to remove this restriction soon). It does not support <a href="#correctoropt">careful mode</a> (mismatch correction is not available). In addition, you cannot specify coverage cutoff for metaSPAdes. Note that metaSPAdes might be very sensitive to presence of the technical sequences remaining in the data (most notably adapter readthroughs), please run quality control and pre-process your data accordingly.
</p>

<a name="plasmid"></a>
<p>
    <code>--plasmid </code> &nbsp; (same as <code>plasmidspades.py</code>)<br>
    &nbsp;&nbsp;&nbsp;&nbsp;This flag is required when assembling only plasmids from WGS data sets (runs plasmidSPAdes, see <a href="http://biorxiv.org/content/early/2016/04/20/048942">paper</a> for the algorithm details). Note, that plasmidSPAdes is not compatible with <a href="#meta">metaSPAdes</a>  and <a href="#sc"> single-cell mode</a>. Additionally, we do not recommend to run plasmidSPAdes on more than one library.
    See <a href="#sec3.6">section 3.6</a> for plasmidSPAdes output details.
</p>


<a name="rna"></a>
<p>
    <code>--rna </code> &nbsp; (same as <code>rnaspades.py</code>)<br>
    &nbsp;&nbsp;&nbsp;&nbsp;This flag should be used when assembling RNA-Seq data sets (runs rnaSPAdes). To learn more, see <a href="rnaspades_manual.html" target="_blank">rnaSPAdes manual</a>.
</p>

<p>
    <code>--iontorrent </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;This flag is required when assembling IonTorrent data. Allows BAM files as input. Carefully read <a href="#sec3.3">section 3.3</a> before using this option.
</p>


<p>
    <code>--test</code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Runs SPAdes on the toy data set; see <a href="#sec2.3">section 2.3</a>.
</p>

<p>
    <code>-h</code> (or <code>--help</code>)<br>
    &nbsp;&nbsp;&nbsp;&nbsp;Prints help.
</p>

<p>
    <code>-v</code> (or <code>--version</code>)<br>
    &nbsp;&nbsp;&nbsp;&nbsp;Prints SPAdes version.
</p>


<a name="pipelineopt">
<h4>Pipeline options</h4>

<p>
    <code>--only-error-correction</code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Performs read error correction only.
</p>

<p>
    <code>--only-assembler</code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Runs assembly module only.
</p>

<a name="correctoropt">
<p>
    <code>--careful</code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Tries to reduce the number of mismatches and short indels. Also runs MismatchCorrector &ndash; a post processing tool, which uses <a href="http://bio-bwa.sourceforge.net" target="_blank">BWA</a> tool (comes with SPAdes). This option is recommended only for assembly of small genomes. We strongly recommend not to use it for large and medium-size eukaryotic genomes. Note, that this options is is not supported by metaSPAdes and rnaSPAdes. 

</p>

<p>
    <code>--continue</code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Continues SPAdes run from the specified output folder starting from the last available check-point. Check-points are made after:
    <ul>
        <li>error correction module is finished</li>
        <li>iteration for each specified K value of assembly module is finished</li>
        <li>mismatch correction is finished for contigs or scaffolds</li>
    </ul>
For example, if specified K values are 21, 33 and 55 and SPAdes was stopped or crashed during assembly stage with K = 55, you can run SPAdes with the <code>--continue</code> option specifying the same output directory. SPAdes will continue the run starting from the assembly stage with K = 55. Error correction module and iterations for K equal to 21 and 33 will not be run again.
Note that all options except <code>-o &lt;output_dir> </code> are ignored if <code>--continue</code> is set.
</p>

<p>
    <code>--restart-from &lt;check_point></code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Restart SPAdes run from the specified output folder starting from the specified check-point. Check-points are:
    <ul>
        <li><code>ec</code> &ndash; start from error correction</li>
        <li><code>as</code> &ndash; restart assembly module from the first iteration</li>
        <li><code>k&lt;int></code> &ndash; restart from the iteration with specified k values, e.g. k55</li>
        <li><code>mc</code> &ndash; restart mismatch correction</li>
    </ul>
In comparison to the <code>--continue</code> option, you can change some of the options when using <code>--restart-from</code>. You can change any option except: all basic options, all options for specifying input data (including <code>--dataset</code>), <code>--only-error-correction</code> option and <code>--only-assembler</code> option. For example, if you ran assembler with k values 21,33,55 without mismatch correction, you can add one more iteration with k=77 and run mismatch correction step by running SPAdes with following options:<br>
     <code>--restart-from k55 -k 21,33,55,77 --mismatch-correction -o &lt;previous_output_dir></code>. 
<br>Since all files will be overwritten, do not forget to copy your assembly from the previous run if you need it.
</p>

<p>
    <code>--disable-gzip-output</code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Forces read error correction module not to compress the corrected reads. If this options is not set, corrected reads will be in <code>*.fastq.gz</code> format.
</p>


<a name="inputdata"></a>
<h4>Input data</h4>

<i><b>&nbsp;&nbsp;Specifying one library (previously used format)</i></b>
<p>
    <code>--12 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with interlaced forward and reverse paired-end reads.
</p>

<p>
    <code>-1 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with forward reads.
</p>

<p>
    <code>-2 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with reverse reads.
</p>

<p>
    <code>-s &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with unpaired reads.
</p>

<i><b>&nbsp;&nbsp;Specifying multiple libraries (new format)</i></b><br>
<ul>

<li><b>&nbsp;Single-read libraries</b></li>

<p>
    <code>--s<b>&lt;#></b> &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File for single-read library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9). For example, for the first paired-end library the option is:
    <code>--s1 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Do not use <code>-s</code> options for single-read libraries, since it specifies unpaired reads for the first paired-end library.
</p>


<li><b>&nbsp;Paired-end libraries</b></li>

<p>
    <code>--pe<b>&lt;#></b>-12 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with interlaced reads for paired-end library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9). For example, for the first single-read library the option is:
    <code>--pe1-12 &lt;file_name> </code><br>
</p>

<p>
    <code>--pe<b>&lt;#></b>-1 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with left reads for paired-end library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

<p>
    <code>--pe<b>&lt;#></b>-2 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with right reads for paired-end library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

<p>
    <code>--pe<b>&lt;#></b>-s &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with unpaired reads from paired-end library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9) <br>
    &nbsp;&nbsp;&nbsp;&nbsp;For example, paired reads can become unpaired during the error correction procedure.
</p>

<p>
    <code>--pe<b>&lt;#></b>-<b>&lt;or></b> &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Orientation of reads for paired-end library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9; <code><b>&lt;or></b></code> = "fr","rf","ff"). <br>
    &nbsp;&nbsp;&nbsp;&nbsp;The default orientation for paired-end libraries is forward-reverse. For example, to specify reverse-forward orientation for the second paired-end library, you should use the flag:
    <code>--pe2-rf </code><br>
</p>

<li><b>&nbsp;Mate-pair libraries</b></li>
<p>
    <code>--mp<b>&lt;#></b>-12 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with interlaced reads for mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

<p>
    <code>--mp<b>&lt;#></b>-1 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with left reads for mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

<p>
    <code>--mp<b>&lt;#></b>-2 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with right reads for mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>
<p>
    <code>--mp<b>&lt;#></b>-<b>&lt;or></b> &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Orientation of reads for mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9; <code><b>&lt;or></b></code> = "fr","rf","ff"). <br>
    &nbsp;&nbsp;&nbsp;&nbsp;The default orientation for mate-pair libraries is reverse-forward. For example, to specify forward-forward orientation for the first mate-pair library, you should use the flag:
    <code>--mp1-ff </code><br>
</p>

<a name="hqmp"></a>
<li><b>&nbsp;High-quality mate-pair libraries</b> (can be used for mate-pair only assembly)</li>

<p>
    <code>--hqmp<b>&lt;#></b>-12 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with interlaced reads for high-quality mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

<p>
    <code>--hqmp<b>&lt;#></b>-1 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with left reads for high-quality mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

<p>
    <code>--hqmp<b>&lt;#></b>-2 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with right reads for high-quality mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>
<p>
    <code>--hqmp<b>&lt;#></b>-s &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with unpaired reads from high-quality mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9) <br>
</p>

<p>
    <code>--hqmp<b>&lt;#></b>-<b>&lt;or></b> &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Orientation of reads for high-quality mate-pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9; <code><b>&lt;or></b></code> = "fr","rf","ff"). <br>
    &nbsp;&nbsp;&nbsp;&nbsp;The default orientation for high-quality mate-pair libraries is forward-reverse. For example, to specify reverse-forward orientation for the first high-quality mate-pair library, you should use the flag:
    <code>--hqmp1-rf </code><br>
</p>



<a name="lxmp"></a>
<li><b>&nbsp;Lucigen NxSeq&reg; Long Mate Pair libraries</b> (see <a href="#sec3.1">section 3.1</a> for details)</li>

<p>
    <code>--nxmate<b>&lt;#></b>-1 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with left reads for Lucigen NxSeq&reg; Long Mate Pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

<p>
    <code>--nxmate<b>&lt;#></b>-2 &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with right reads for Lucigen NxSeq&reg; Long Mate Pair library number <code><b>&lt;#></b></code> (<code><b>&lt;#></b></code> = 1,2,..,9).
</p>

</p>
</ul>


<i><b>&nbsp;&nbsp;Specifying data for hybrid assembly</i></b>

<p>
    <code>--pacbio &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with PacBio CLR reads. For PacBio CCS reads use <code>-s</code> option. More information on PacBio reads is provided in <a href="#pacbio">section 3.1</a>. 
</p>


<p>
    <code>--nanopore &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with Oxford Nanopore reads. 
</p>


<p>
    <code>--sanger &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;File with Sanger reads
</p>

<p>
    <code>--trusted-contigs &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Reliable contigs of the same genome, which are likely to have no misassemblies and small rate of other errors (e.g. mismatches and indels). This option is not intended for contigs of the related species.
</p>

<p>
    <code>--untrusted-contigs &lt;file_name> </code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Contigs of the same genome, quality of which is average or unknown. Contigs of poor quality can be used but may introduce errors in the assembly. This option is also not intended for contigs of the related species.
</p>

<a name="yaml"></a>
<i><b>&nbsp;&nbsp;Specifying input data with YAML data set file (advanced)</i></b>

<p>
    An alternative way to specify an input data set for SPAdes is to create a <a href="http://www.yaml.org/" target="_blank">YAML</a> data set file.
By using a YAML file you can provide an unlimited number of paired-end, mate-pair and unpaired libraries.
Basically, YAML data set file is a text file, in which input libraries are provided as a comma-separated list in square brackets. 
Each library is provided in braces as a comma-separated list of attributes. 
The following attributes are available:
    <ul>
        <li>orientation ("fr", "rf", "ff")</li>
        <li>type ("paired-end", "mate-pairs", "hq-mate-pairs", "single", "pacbio", "nanopore", "sanger", "trusted-contigs", "untrusted-contigs")</li>
        <li>interlaced reads (comma-separated list of files with interlaced reads)</li>
        <li>left reads (comma-separated list of files with left reads)</li>
        <li>right reads (comma-separated list of files with right reads)</li>
        <li>single reads (comma-separated list of files with single reads)</li>
    </ul>

<p>
    To properly specify a library you should provide its type and at least one file with reads. 
Orientation is an optional attribute. Its default value is "fr" (forward-reverse) for paired-end libraries and
"rf" (reverse-forward) for mate-pair libraries.

<p>
    The value for each attribute is given after a colon. 
Comma-separated lists of files should be given in square brackets. 
For each file you should provide its full path in double quotes.
Make sure that files with right reads are given in the same order as corresponding files with left reads.

<p>
    For example, if you have one paired-end library splitted into two pairs of files:
<pre class="code">
<code>
    lib_pe1_left_1.fastq
    lib_pe1_right_1.fastq
    lib_pe1_left_2.fastq
    lib_pe1_right_2.fastq
</code>
</pre>

one mate-pair library:

<pre class="code">
<code>
    lib_mp1_left.fastq
    lib_mp1_right.fastq
</code>
</pre>
and PacBio CCS and CLR reads:

<pre class="code">
<code>
    pacbio_ccs.fastq
    pacbio_clr.fastq
</code>
</pre>
</pre>
    YAML file should look like this:
    
<pre class="code">
<code>
    [
      {
        orientation: "fr",
        type: "paired-end",
        right reads: [
          "/FULL_PATH_TO_DATASET/lib_pe1_right_1.fastq",
          "/FULL_PATH_TO_DATASET/lib_pe1_right_2.fastq" 
        ],
        left reads: [
          "/FULL_PATH_TO_DATASET/lib_pe1_left_1.fastq",
          "/FULL_PATH_TO_DATASET/lib_pe1_left_2.fastq" 
        ]
      },
      {
        orientation: "rf",
        type: "mate-pairs",
        right reads: [
          "/FULL_PATH_TO_DATASET/lib_mp1_right.fastq" 
        ],
        left reads: [
          "/FULL_PATH_TO_DATASET/lib_mp1_left.fastq"
        ]
      },
      {
        type: "single",
        single reads: [
          "/FULL_PATH_TO_DATASET/pacbio_ccs.fastq" 
        ]
      },
      {
        type: "pacbio",
        single reads: [
          "/FULL_PATH_TO_DATASET/pacbio_clr.fastq" 
        ]
      }
    ]
</code>
</pre>

    
<p>
    Once you have created a YAML file save it with <code>.yaml</code> extension (e.g. as <code>my_data_set.yaml</code>) and run SPAdes using the <code>--dataset</code> option: <br>
    <code>--dataset &lt;your YAML file></code><br><br>

    Notes:
    <ul>
        <li> The <code>--dataset</code> option cannot be used with any other options for specifying input data. </li>
        <li> We recommend to nest all files with long reads of the same data type in a single library block.  </li>
    </ul>


<a name="advancedopt">
<h4>Advanced options</h4>

<p>
    <code>-t &lt;int></code> (or <code>--threads &lt;int></code>)<br>
    &nbsp;&nbsp;&nbsp;&nbsp;Number of threads. The default value is 16.
</p>

<p>
    <code>-m &lt;int></code> (or <code>--memory &lt;int></code>)<br>
    &nbsp;&nbsp;&nbsp;&nbsp;Set memory limit in Gb. SPAdes terminates if it reaches this limit. The default value is 250 Gb. Actual amount of consumed RAM will be below this limit. Make sure this value is correct for the given machine. SPAdes uses the limit value to automatically determine the sizes of various buffers, etc.
</p>

<p>
    <code>--tmp-dir &lt;dir_name></code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Set directory for temporary files from read error correction. The default value is <code>&lt;output_dir>/corrected/tmp</code>
</p>

<p>
    <code>-k &lt;int,int,...></code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Comma-separated list of k-mer sizes to be used (all values must be odd, less than 128 and listed in ascending order). If <code>--sc</code> is set the default values are 21,33,55. For multicell data sets K values are automatically selected using maximum read length (<a href="#sec3.4">see note for assembling long Illumina paired reads for details</a>). To properly select K values for IonTorrent data read <a href="#sec3.3">section 3.3</a>.
</p>

<p>
    <code>--cov-cutoff &lt;float></code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;Read coverage cutoff value. Must be a positive float value, or 'auto', or 'off'. Default value is 'off'. When set to 'auto' SPAdes automatically computes coverage threshold using conservative strategy. Note, that this option is not supported by metaSPAdes.
</p>


<p>
    <code>--phred-offset &lt;33 or 64></code><br>
    &nbsp;&nbsp;&nbsp;&nbsp;PHRED quality offset for the input reads, can be either 33 or 64. It will be auto-detected if it is not specified.
</p>




<a name="examples">
<h4>Examples</h4>
<p>
    To test the toy data set, you can also run the following command from the SPAdes <code>bin</code> directory:

<pre class="code">
<code>
    spades.py --pe1-1 ../share/spades/test_dataset/ecoli_1K_1.fq.gz \
    --pe1-2 ../share/spades/test_dataset/ecoli_1K_2.fq.gz -o spades_test
</code>
</pre>

<p>
    If you have your library separated into several pairs of files, for example:

<pre class="code">
<code>
    lib1_forward_1.fastq
    lib1_reverse_1.fastq
    lib1_forward_2.fastq
    lib1_reverse_2.fastq
</code>
</pre>


<p>
    make sure that corresponding files are given in the same order:

<pre class="code">
<code>
    spades.py --pe1-1 lib1_forward_1.fastq --pe1-2 lib1_reverse_1.fastq \
    --pe1-1 lib1_forward_2.fastq --pe1-2 lib1_reverse_2.fastq \
    -o spades_output
</code>
</pre>

<p>
    Files with interlacing paired-end reads or files with unpaired reads can be specified in any order with one file per option, for example:

<pre class="code">
<code>
    spades.py --pe1-12 lib1_1.fastq --pe1-12 lib1_2.fastq \
    --pe1-s lib1_unpaired_1.fastq --pe1-s lib1_unpaired_2.fastq \
    -o spades_output    
</code>
</pre>

<p>
    If you have several paired-end and mate-pair reads, for example:

<li> paired-end library 1
<pre class="code">
<code>
    lib_pe1_left.fastq
    lib_pe1_right.fastq
</code>
</pre>
<p>
<li> mate-pair library 1

<pre class="code">
<code>
    lib_mp1_left.fastq
    lib_mp1_right.fastq
</code>
</pre>
<p>
<li> mate-pair library 2
<pre class="code">
<code>
    lib_mp2_left.fastq
    lib_mp2_right.fastq
</code>
</pre>

<p>
    make sure that files corresponding to each library are grouped together:

<pre class="code">
<code>
    spades.py --pe1-1 lib_pe1_left.fastq --pe1-2 lib_pe1_right.fastq \
    --mp1-1 lib_mp1_left.fastq --mp1-2 lib_mp1_right.fastq \
    --mp2-1 lib_mp2_left.fastq --mp2-2 lib_mp2_right.fastq \
    -o spades_output
</code>
</pre>

<p>
    If you have IonTorrent unpaired reads, PacBio CLR and additional reliable contigs:

<pre class="code">
<code>
    it_reads.fastq
    pacbio_clr.fastq
    contigs.fasta
</code>
</pre>

<p>
    run SPAdes with the following command:

<pre class="code">
<code>
    spades.py --iontorrent -s it_reads.fastq \
    --pacbio pacbio_clr.fastq --trusted-contigs contigs.fastq \
    -o spades_output
</code>
</pre>

<p>
    If a single-read library is splitted into several files:

<pre class="code">
<code>
    unpaired1_1.fastq
    unpaired1_2.fastq
    unpaired1_3.fasta
</code>
</pre>

<p>
    specify them as one library:

<pre class="code">
<code>
    spades.py --s1 unpaired1_1.fastq \
    --s1 unpaired1_2.fastq --s1 unpaired1_3.fastq \
    -o spades_output
</code>
</pre>

<p>
    All options for specifying input data can be mixed if needed, but make sure that files for each library are grouped and files with left and right paired reads are listed in the same order.

<a name="sec3.3">
<h3>3.3 Assembling IonTorrent reads</h3>
<p>
Only FASTQ or BAM files are supported as input.

<p>
The selection of k-mer length is non-trivial for IonTorrent. If the dataset is more or less conventional (good coverage, not high GC, etc), then use our <a href="#sec3.4">recommendation for long reads</a> (e.g. assemble using k-mer lengths 21,33,55,77,99,127). However, due to increased error rate some changes of k-mer lengths (e.g. selection of shorter ones) may be required. For example, if you ran SPAdes with k-mer lengths 21,33,55,77 and then decided to assemble the same data set using more iterations and larger values of K, you can run SPAdes once again specifying the same output folder and the following options: <code>--restart-from k77 -k 21,33,55,77,99,127 --mismatch-correction -o &lt;previous_output_dir></code>. Do not forget to copy contigs and scaffolds from the previous run. We're planning to tackle issue of selecting k-mer lengths for IonTorrent reads in next versions.

<p> You may need no error correction for Hi-Q enzyme at all. However, we suggest trying to assemble your data with and without error correction and select the best variant.

<p> For non-trivial datasets (e.g. with high GC, low or uneven coverage) we suggest to enable single-cell mode (setting <code>--sc</code> option) and use k-mer lengths of 21,33,55.


<a name="sec3.4">
<h3>3.4 Assembling long Illumina paired reads (2x150 and 2x250)</h3>
<p>
Recent advances in DNA sequencing technology have led to a rapid increase in read length. Nowadays, it is a common situation to have a data set consisting of 2x150 or 2x250 paired-end reads produced by Illumina MiSeq or HiSeq2500. However, the use of longer reads alone will not automatically improve assembly quality. An assembler that can properly take advantage of them is needed.
<p>
SPAdes' use of iterative k-mer lengths allows benefiting from the full potential of the long paired-end reads. Currently one has to set the assembler options up manually, but we plan to incorporate automatic calculation of necessary options soon.
<p>
Please note that in addition to the read length, the insert length also matters a lot. It is not recommended to sequence a 300bp fragment with a pair of 250bp reads. We suggest using 350-500 bp fragments with 2x150 reads and 550-700 bp fragments with 2x250 reads.

<h4>Multi-cell data set with read length 2x150</h4>
<p>
Do not turn off SPAdes error correction (BayesHammer module), which is included in SPAdes default pipeline.
<p>
If you have enough coverage (50x+), then you may want to try to set k-mer lengths of 21, 33, 55, 77 (selected by default for reads with length 150bp).
<p>
Make sure you run assembler with the <code>--careful</code> option to minimize number of mismatches in the final contigs.
<p>
We recommend that you check the SPAdes log file at the end of the each iteration to control the average coverage of the contigs.

<p>
For reads corrected prior to running the assembler: 
<pre class="code">
<code>
    spades.py -k 21,33,55,77 --careful --only-assembler &lt;your reads> -o spades_output
</code>
</pre>
 
<p>
To correct and assemble the reads:
<pre class="code">
<code>
    spades.py -k 21,33,55,77 --careful &lt;your reads> -o spades_output
</code>
</pre>

<h4>Multi-cell data set with read lengths 2 x 250</h4>
<p>
Do not turn off SPAdes error correction (BayesHammer module), which is included in SPAdes default pipeline.
<p>
By default we suggest to increase k-mer lengths in increments of 22 until the  k-mer length reaches 127. The exact length of the k-mer depends on the coverage: k-mer length of 127 corresponds to 50x k-mer coverage and higher. For read length 250bp SPAdes automatically chooses K values equal to 21, 33, 55, 77, 99, 127.
<p>
Make sure you run assembler with <code>--careful</code> option to minimize number of mismatches in the final contigs.
<p>
We recommend you to check the SPAdes log file at the end of the each iteration to control the average coverage of the contigs.
<p>
For reads corrected prior to running the assembler: 
<pre class="code">
<code>
    spades.py -k 21,33,55,77,99,127 --careful --only-assembler &lt;your reads> -o spades_output
</code>
</pre>
 
<p>
To correct and assemble the reads:
<pre class="code">
<code>
    spades.py -k 21,33,55,77,99,127 --careful &lt;your reads> -o spades_output
</code>
</pre>

<h4>Single-cell data set with read lengths 2 x 150 or 2 x 250</h4>
<p>
The default k-mer lengths are recommended. For single-cell data sets SPAdes selects k-mer sizes 21, 33 and 55.
<p>
However, it might be tricky to fully utilize the advantages of  long reads you have. Consider contacting us for more information and to discuss assembly strategy.
<br>


<a name="sec3.5">
<h3>3.5 SPAdes output</h3>
<p>
    SPAdes stores all output files in <code>&lt;output_dir> </code>, which is set by the user.

    <ul>
        <li><code>&lt;output_dir>/corrected/</code> directory contains reads corrected by BayesHammer in <code>*.fastq.gz</code> files; if compression is disabled, reads are stored in uncompressed  <code>*.fastq</code> files</li>
        <li><code>&lt;output_dir>/scaffolds.fasta</code> contains resulting scaffolds (recommended for use as resulting sequences)</li>
        <li><code>&lt;output_dir>/contigs.fasta</code> contains resulting contigs</li>
        <li><code>&lt;output_dir>/assembly_graph.fastg</code> contains SPAdes assembly graph in <a href="http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf" target="_blank">FASTG format</a></li>
        <li><code>&lt;output_dir>/contigs.paths</code> contains paths in the assembly graph corresponding to contigs.fasta (see details below)</li>
        <li><code>&lt;output_dir>/scaffolds.paths</code> contains paths in the assembly graph corresponding to scaffolds.fasta (see details below)</li>
    </ul>

<p>
   Contigs/scaffolds names in SPAdes output FASTA files have the following format: <br><code>>NODE_3_length_237403_cov_243.207_ID_45</code><br> Here <code>3</code> is the number of the contig/scaffold, <code>237403</code> is the sequence length in nucleotides and <code>243.207</code> is the k-mer coverage for the last (largest) k value used. Note that the k-mer coverage is always lower than the read (per-base) coverage. 

<p>
   To view FASTG files we recommend to use <a href="http://rrwick.github.io/Bandage/" target="_blank">Bandage visualization tool</a>. Note that sequences stored in <code>assembly_graph.fastg</code> correspond to contigs before repeat resolution (edges of the assembly graph). Paths corresponding to contigs after repeat resolution (scaffolding) are stored in <code>contigs.paths</code> (<code>scaffolds.paths</code>) in the format accepted by Bandage (see <a href="https://github.com/rrwick/Bandage/wiki/Graph-paths" target="_blank">Bandage wiki</a> for details). The example is given below.

<p> Let the contig with the name <code>NODE_5_length_100000_cov_215.651_ID_5</code> consist of the following edges of the assembly graph:
<pre>
    <code>
    >EDGE_<b>2</b>_length_33280_cov_199.702
    >EDGE_<b>5</b>_length_84_cov_321.414<b>'</b>
    >EDGE_<b>3</b>_length_111_cov_175.304
    >EDGE_<b>5</b>_length_84_cov_321.414<b>'</b>
    >EDGE_<b>4</b>_length_66661_cov_223.548
    </code>
</pre>
<p>
Then, <code>contigs.paths</code> will contain the following record:
<pre>
    <code>
    NODE_5_length_100000_cov_215.651_ID_5
    2+,5-,3+,5-,4+
    </code>
</pre>

<p>
Since the current version of Bandage does not accept paths with gaps, paths corresponding contigs/scaffolds jumping over a gap in the assembly graph are splitted by semicolon at the gap positions. For example, the following record
<pre>
    <code>
    NODE_3_length_237403_cov_243.207_ID_45
    21-,17-,15+,17-,16+;
    31+,23-,22+,23-,4-
    </code>
</pre>
states that <code>NODE_3_length_237403_cov_243.207_ID_45</code> corresponds to the path with 10 edges, but jumps over a gap between edges <code>EDGE_16_length_21503_cov_482.709</code> and <code>EDGE_31_length_140767_cov_220.239</code>.

<p>
The full list of <code>&lt;output_dir></code> content is presented below: 
</p>
<pre>
    <code>scaffolds.fasta</code> &ndash; <i>resulting scaffolds (recommended for use as resulting sequences)</i>
    <code>contigs.fasta</code> &ndash; <i>resulting contigs</i>
    <code>assembly_graph.fastg</code> &ndash; <i>assembly graph</i>
    <code>contigs.paths</code> &ndash; <i>contigs paths in the assembly graph</i>
    <code>scaffolds.paths</code> &ndash; <i>scaffolds paths in the assembly graph</i>
    <code>before_rr.fasta</code> &ndash; <i>contigs before repeat resolution</i>

    <code>corrected/</code> &ndash; <i>files from read error correction</i>
        <code>configs/</code> &ndash; <i>configuration files for read error correction</i>
        <code>corrected.yaml</code> &ndash; <i>internal configuration file</i>
        Output files with corrected reads

    <code>params.txt</code> &ndash; <i>information about SPAdes parameters in this run</i>
    <code>spades.log</code> &ndash; <i>SPAdes log</i>
    <code>dataset.info</code> &ndash; <i>internal configuration file</i>
    <code>input_dataset.yaml</code> &ndash; <i>internal YAML data set file</i>
    <code>K&lt;##>/</code> &ndash; <i>directory containing intermediate files from the run with K=&lt;##>. These files should not be used as assembly results; use resulting contigs/scaffolds in files mentioned above.</i>
</pre>

<p>
    SPAdes will overwrite these files and directories if they exist in the specified <code>&lt;output_dir></code>. 

<a name="sec3.6">
<h3>3.6 plasmidSPAdes output</h3>
<p>
plasmidSPAdes outputs only DNA sequences from putative plasmids. Output file names and formats remain the same as in SPAdes (see <a href="#sec3.5">previous</a> section), with the following difference. For all contig names in <code>contigs.fasta</code>, <code>scaffolds.fasta</code>  and  <code>assembly_graph.fastg</code> 
we append suffix <code>_component_X</code>, where <code>X</code> is the id of the putative plasmid, which the contig belongs to. Note that plasmidSPAdes may not be able to separate similar plasmids and thus their contigs may appear with the same id.

<a name="sec3.7">
<h3>3.7 Assembly evaluation</h3>

<p>

    <a href="http://cab.spbu.ru/software/quast/" target="_blank">QUAST</a> may be used to generate summary statistics (N50, maximum contig length, GC %, # genes found in a reference list or with built-in gene finding tools, etc.) for a single assembly. It may also be used to compare statistics for multiple assemblies of the same data set (e.g., SPAdes run with different parameters, or several different assemblers).
<br>



<a name="sec4">
<h2>4. Citation</h2>
<p>
    If you use SPAdes in your research, please include <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-37195-0_13" target="_blank">Nurk, Bankevich et al., 2013</a> in your reference list. You may also add <a href="http://online.liebertpub.com/doi/abs/10.1089/cmb.2012.0021" target="_blank">Bankevich, Nurk et al., 2012</a> instead.

<p>
    If you use PacBio or Nanopore reads, you may also cite  <a href="http://bioinformatics.oxfordjournals.org/content/early/2015/11/20/bioinformatics.btv688.short" target="_blank">Antipov et al., 2015</a>. If you use multiple paired-end and/or mate-pair libraries you may also cite papers describing SPAdes repeat resolution algorithms <a href="http://bioinformatics.oxfordjournals.org/content/30/12/i293.short" target="_blank">Prjibelski et al., 2014</a> and <a href="http://bioinformatics.oxfordjournals.org/content/31/20/3262.abstract" target="_blank">Vasilinetc et al., 2015</a>. If you use plasmidSPAdes please cite <a href="http://biorxiv.org/content/early/2016/04/20/048942">Antipov et al., 2016</a>.

<p>  
    For the information about dipSPAdes and truSPAdes papers see <a href="dipspades_manual.html" target="_blank">dipSPAdes manual</a> and <a href="truspades_manual.html" target="_blank">truSPAdes manual</a> respectively.

<p>
    In addition, we would like to list your publications that use our software on our website. Please email the reference, the name of your lab, department and institution to <a href="mailto:spades.support@cab.spbu.ru" target="_blank">spades.support@cab.spbu.ru</a>.
<br>


<a name="sec5">
<h2>5. Feedback and bug reports</h2>
<p>
    Your comments, bug reports, and suggestions are very welcomed. They will help us to further improve SPAdes.

<p>
    If you have any troubles running SPAdes, please send us <code>params.txt</code> and <code>spades.log</code> from the directory <code>&lt;output_dir></code>.

<p>
    Address for communications: <a href="mailto:spades.support@cab.spbu.ru" target="_blank">spades.support@cab.spbu.ru</a>.

<br/><br/><br/><br/><br/>

</body>
</html>