1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SF_CBRT_HPP
#define BOOST_MATH_SF_CBRT_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/rational.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/mpl/divides.hpp>
#include <boost/mpl/plus.hpp>
#include <boost/mpl/if.hpp>
#include <boost/type_traits/is_convertible.hpp>
namespace boost{ namespace math{
namespace detail
{
struct big_int_type
{
operator boost::uintmax_t()const;
};
template <class T>
struct largest_cbrt_int_type
{
typedef typename mpl::if_<
boost::is_convertible<big_int_type, T>,
boost::uintmax_t,
unsigned int
>::type type;
};
template <class T, class Policy>
T cbrt_imp(T z, const Policy& pol)
{
BOOST_MATH_STD_USING
//
// cbrt approximation for z in the range [0.5,1]
// It's hard to say what number of terms gives the optimum
// trade off between precision and performance, this seems
// to be about the best for double precision.
//
// Maximum Deviation Found: 1.231e-006
// Expected Error Term: -1.231e-006
// Maximum Relative Change in Control Points: 5.982e-004
//
static const T P[] = {
static_cast<T>(0.37568269008611818),
static_cast<T>(1.3304968705558024),
static_cast<T>(-1.4897101632445036),
static_cast<T>(1.2875573098219835),
static_cast<T>(-0.6398703759826468),
static_cast<T>(0.13584489959258635),
};
static const T correction[] = {
static_cast<T>(0.62996052494743658238360530363911), // 2^-2/3
static_cast<T>(0.79370052598409973737585281963615), // 2^-1/3
static_cast<T>(1),
static_cast<T>(1.2599210498948731647672106072782), // 2^1/3
static_cast<T>(1.5874010519681994747517056392723), // 2^2/3
};
if(!(boost::math::isfinite)(z))
{
return policies::raise_domain_error("boost::math::cbrt<%1%>(%1%)", "Argument to function must be finite but got %1%.", z, pol);
}
int i_exp, sign(1);
if(z < 0)
{
z = -z;
sign = -sign;
}
if(z == 0)
return 0;
T guess = frexp(z, &i_exp);
int original_i_exp = i_exp; // save for later
guess = tools::evaluate_polynomial(P, guess);
int i_exp3 = i_exp / 3;
typedef typename largest_cbrt_int_type<T>::type shift_type;
BOOST_STATIC_ASSERT( ::std::numeric_limits<shift_type>::radix == 2);
if(abs(i_exp3) < std::numeric_limits<shift_type>::digits)
{
if(i_exp3 > 0)
guess *= shift_type(1u) << i_exp3;
else
guess /= shift_type(1u) << -i_exp3;
}
else
{
guess = ldexp(guess, i_exp3);
}
i_exp %= 3;
guess *= correction[i_exp + 2];
//
// Now inline Halley iteration.
// We do this here rather than calling tools::halley_iterate since we can
// simplify the expressions algebraically, and don't need most of the error
// checking of the boilerplate version as we know in advance that the function
// is well behaved...
//
typedef typename policies::precision<T, Policy>::type prec;
typedef typename mpl::divides<prec, mpl::int_<3> >::type prec3;
typedef typename mpl::plus<prec3, mpl::int_<3> >::type new_prec;
typedef typename policies::normalise<Policy, policies::digits2<new_prec::value> >::type new_policy;
//
// Epsilon calculation uses compile time arithmetic when it's available for type T,
// otherwise uses ldexp to calculate at runtime:
//
T eps = (new_prec::value > 3) ? policies::get_epsilon<T, new_policy>() : ldexp(T(1), -2 - tools::digits<T>() / 3);
T diff;
if(original_i_exp < std::numeric_limits<T>::max_exponent - 3)
{
//
// Safe from overflow, use the fast method:
//
do
{
T g3 = guess * guess * guess;
diff = (g3 + z + z) / (g3 + g3 + z);
guess *= diff;
}
while(fabs(1 - diff) > eps);
}
else
{
//
// Either we're ready to overflow, or we can't tell because numeric_limits isn't
// available for type T:
//
do
{
T g2 = guess * guess;
diff = (g2 - z / guess) / (2 * guess + z / g2);
guess -= diff;
}
while((guess * eps) < fabs(diff));
}
return sign * guess;
}
} // namespace detail
template <class T, class Policy>
inline typename tools::promote_args<T>::type cbrt(T z, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return static_cast<result_type>(detail::cbrt_imp(value_type(z), pol));
}
template <class T>
inline typename tools::promote_args<T>::type cbrt(T z)
{
return cbrt(z, policies::policy<>());
}
} // namespace math
} // namespace boost
#endif // BOOST_MATH_SF_CBRT_HPP
|