1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
///////////////////////////////////////////////////////////////////////////////
// Copyright 2013 John Maddock
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_BERNOULLI_DETAIL_HPP
#define BOOST_MATH_BERNOULLI_DETAIL_HPP
#include <boost/config.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/math/tools/toms748_solve.hpp>
#include <vector>
#ifdef BOOST_HAS_THREADS
#ifndef BOOST_NO_CXX11_HDR_ATOMIC
# include <atomic>
# define BOOST_MATH_ATOMIC_NS std
#if ATOMIC_INT_LOCK_FREE == 2
typedef std::atomic<int> atomic_counter_type;
typedef int atomic_integer_type;
#elif ATOMIC_SHORT_LOCK_FREE == 2
typedef std::atomic<short> atomic_counter_type;
typedef short atomic_integer_type;
#elif ATOMIC_LONG_LOCK_FREE == 2
typedef std::atomic<long> atomic_counter_type;
typedef long atomic_integer_type;
#elif ATOMIC_LLONG_LOCK_FREE == 2
typedef std::atomic<long long> atomic_counter_type;
typedef long long atomic_integer_type;
#else
# define BOOST_MATH_NO_ATOMIC_INT
#endif
#else // BOOST_NO_CXX11_HDR_ATOMIC
//
// We need Boost.Atomic, but on any platform that supports auto-linking we do
// not need to link against a separate library:
//
#define BOOST_ATOMIC_NO_LIB
#include <boost/atomic.hpp>
# define BOOST_MATH_ATOMIC_NS boost
namespace boost{ namespace math{ namespace detail{
//
// We need a type to use as an atomic counter:
//
#if BOOST_ATOMIC_INT_LOCK_FREE == 2
typedef boost::atomic<int> atomic_counter_type;
typedef int atomic_integer_type;
#elif BOOST_ATOMIC_SHORT_LOCK_FREE == 2
typedef boost::atomic<short> atomic_counter_type;
typedef short atomic_integer_type;
#elif BOOST_ATOMIC_LONG_LOCK_FREE == 2
typedef boost::atomic<long> atomic_counter_type;
typedef long atomic_integer_type;
#elif BOOST_ATOMIC_LLONG_LOCK_FREE == 2
typedef boost::atomic<long long> atomic_counter_type;
typedef long long atomic_integer_type;
#else
# define BOOST_MATH_NO_ATOMIC_INT
#endif
}}} // namespaces
#endif // BOOST_NO_CXX11_HDR_ATOMIC
#endif // BOOST_HAS_THREADS
namespace boost{ namespace math{ namespace detail{
//
// Asymptotic expansion for B2n due to
// Luschny LogB3 formula (http://www.luschny.de/math/primes/bernincl.html)
//
template <class T, class Policy>
T b2n_asymptotic(int n)
{
BOOST_MATH_STD_USING
const T nx = static_cast<T>(n);
const T nx2(nx * nx);
const T approximate_log_of_bernoulli_bn =
((boost::math::constants::half<T>() + nx) * log(nx))
+ ((boost::math::constants::half<T>() - nx) * log(boost::math::constants::pi<T>()))
+ (((T(3) / 2) - nx) * boost::math::constants::ln_two<T>())
+ ((nx * (T(2) - (nx2 * 7) * (1 + ((nx2 * 30) * ((nx2 * 12) - 1))))) / (((nx2 * nx2) * nx2) * 2520));
return ((n / 2) & 1 ? 1 : -1) * (approximate_log_of_bernoulli_bn > tools::log_max_value<T>()
? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, nx, Policy())
: static_cast<T>(exp(approximate_log_of_bernoulli_bn)));
}
template <class T, class Policy>
T t2n_asymptotic(int n)
{
BOOST_MATH_STD_USING
// Just get B2n and convert to a Tangent number:
T t2n = fabs(b2n_asymptotic<T, Policy>(2 * n)) / (2 * n);
T p2 = ldexp(T(1), n);
if(tools::max_value<T>() / p2 < t2n)
return policies::raise_overflow_error<T>("boost::math::tangent_t2n<%1%>(std::size_t)", 0, T(n), Policy());
t2n *= p2;
p2 -= 1;
if(tools::max_value<T>() / p2 < t2n)
return policies::raise_overflow_error<T>("boost::math::tangent_t2n<%1%>(std::size_t)", 0, Policy());
t2n *= p2;
return t2n;
}
//
// We need to know the approximate value of /n/ which will
// cause bernoulli_b2n<T>(n) to return infinity - this allows
// us to elude a great deal of runtime checking for values below
// n, and only perform the full overflow checks when we know that we're
// getting close to the point where our calculations will overflow.
// We use Luschny's LogB3 formula (http://www.luschny.de/math/primes/bernincl.html)
// to find the limit, and since we're dealing with the log of the Bernoulli numbers
// we need only perform the calculation at double precision and not with T
// (which may be a multiprecision type). The limit returned is within 1 of the true
// limit for all the types tested. Note that although the code below is basically
// the same as b2n_asymptotic above, it has been recast as a continuous real-valued
// function as this makes the root finding go smoother/faster. It also omits the
// sign of the Bernoulli number.
//
struct max_bernoulli_root_functor
{
max_bernoulli_root_functor(long long t) : target(static_cast<double>(t)) {}
double operator()(double n)
{
BOOST_MATH_STD_USING
// Luschny LogB3(n) formula.
const double nx2(n * n);
const double approximate_log_of_bernoulli_bn
= ((boost::math::constants::half<double>() + n) * log(n))
+ ((boost::math::constants::half<double>() - n) * log(boost::math::constants::pi<double>()))
+ (((double(3) / 2) - n) * boost::math::constants::ln_two<double>())
+ ((n * (2 - (nx2 * 7) * (1 + ((nx2 * 30) * ((nx2 * 12) - 1))))) / (((nx2 * nx2) * nx2) * 2520));
return approximate_log_of_bernoulli_bn - target;
}
private:
double target;
};
template <class T, class Policy>
inline std::size_t find_bernoulli_overflow_limit(const mpl::false_&)
{
long long t = lltrunc(boost::math::tools::log_max_value<T>());
max_bernoulli_root_functor fun(t);
boost::math::tools::equal_floor tol;
boost::uintmax_t max_iter = boost::math::policies::get_max_root_iterations<Policy>();
return static_cast<std::size_t>(boost::math::tools::toms748_solve(fun, sqrt(double(t)), double(t), tol, max_iter).first) / 2;
}
template <class T, class Policy>
inline std::size_t find_bernoulli_overflow_limit(const mpl::true_&)
{
return max_bernoulli_index<bernoulli_imp_variant<T>::value>::value;
}
template <class T, class Policy>
std::size_t b2n_overflow_limit()
{
// This routine is called at program startup if it's called at all:
// that guarantees safe initialization of the static variable.
typedef mpl::bool_<(bernoulli_imp_variant<T>::value >= 1) && (bernoulli_imp_variant<T>::value <= 3)> tag_type;
static const std::size_t lim = find_bernoulli_overflow_limit<T, Policy>(tag_type());
return lim;
}
//
// The tangent numbers grow larger much more rapidly than the Bernoulli numbers do....
// so to compute the Bernoulli numbers from the tangent numbers, we need to avoid spurious
// overflow in the calculation, we can do this by scaling all the tangent number by some scale factor:
//
template <class T>
inline typename enable_if_c<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::radix == 2), T>::type tangent_scale_factor()
{
BOOST_MATH_STD_USING
return ldexp(T(1), std::numeric_limits<T>::min_exponent + 5);
}
template <class T>
inline typename disable_if_c<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::radix == 2), T>::type tangent_scale_factor()
{
return tools::min_value<T>() * 16;
}
//
// Initializer: ensure all our constants are initialized prior to the first call of main:
//
template <class T, class Policy>
struct bernoulli_initializer
{
struct init
{
init()
{
//
// We call twice, once to initialize our static table, and once to
// initialize our dymanic table:
//
boost::math::bernoulli_b2n<T>(2, Policy());
#ifndef BOOST_NO_EXCEPTIONS
try{
#endif
boost::math::bernoulli_b2n<T>(max_bernoulli_b2n<T>::value + 1, Policy());
#ifndef BOOST_NO_EXCEPTIONS
} catch(const std::overflow_error&){}
#endif
boost::math::tangent_t2n<T>(2, Policy());
}
void force_instantiate()const{}
};
static const init initializer;
static void force_instantiate()
{
initializer.force_instantiate();
}
};
template <class T, class Policy>
const typename bernoulli_initializer<T, Policy>::init bernoulli_initializer<T, Policy>::initializer;
//
// We need something to act as a cache for our calculated Bernoulli numbers. In order to
// ensure both fast access and thread safety, we need a stable table which may be extended
// in size, but which never reallocates: that way values already calculated may be accessed
// concurrently with another thread extending the table with new values.
//
// Very very simple vector class that will never allocate more than once, we could use
// boost::container::static_vector here, but that allocates on the stack, which may well
// cause issues for the amount of memory we want in the extreme case...
//
template <class T>
struct fixed_vector : private std::allocator<T>
{
typedef unsigned size_type;
typedef T* iterator;
typedef const T* const_iterator;
fixed_vector() : m_used(0)
{
std::size_t overflow_limit = 5 + b2n_overflow_limit<T, policies::policy<> >();
m_capacity = static_cast<unsigned>((std::min)(overflow_limit, static_cast<std::size_t>(100000u)));
m_data = this->allocate(m_capacity);
}
~fixed_vector()
{
for(unsigned i = 0; i < m_used; ++i)
this->destroy(&m_data[i]);
this->deallocate(m_data, m_capacity);
}
T& operator[](unsigned n) { BOOST_ASSERT(n < m_used); return m_data[n]; }
const T& operator[](unsigned n)const { BOOST_ASSERT(n < m_used); return m_data[n]; }
unsigned size()const { return m_used; }
unsigned size() { return m_used; }
void resize(unsigned n, const T& val)
{
if(n > m_capacity)
{
BOOST_THROW_EXCEPTION(std::runtime_error("Exhausted storage for Bernoulli numbers."));
}
for(unsigned i = m_used; i < n; ++i)
new (m_data + i) T(val);
m_used = n;
}
void resize(unsigned n) { resize(n, T()); }
T* begin() { return m_data; }
T* end() { return m_data + m_used; }
T* begin()const { return m_data; }
T* end()const { return m_data + m_used; }
unsigned capacity()const { return m_capacity; }
void clear() { m_used = 0; }
private:
T* m_data;
unsigned m_used, m_capacity;
};
template <class T, class Policy>
class bernoulli_numbers_cache
{
public:
bernoulli_numbers_cache() : m_overflow_limit((std::numeric_limits<std::size_t>::max)())
#if 0 && defined(BOOST_HAS_THREADS) && !defined(BOOST_MATH_NO_ATOMIC_INT)
, m_counter(0)
#endif
, m_current_precision(boost::math::tools::digits<T>())
{}
typedef fixed_vector<T> container_type;
void tangent(std::size_t m)
{
static const std::size_t min_overflow_index = b2n_overflow_limit<T, Policy>() - 1;
tn.resize(static_cast<typename container_type::size_type>(m), T(0U));
BOOST_MATH_INSTRUMENT_VARIABLE(min_overflow_index);
std::size_t prev_size = m_intermediates.size();
m_intermediates.resize(m, T(0U));
if(prev_size == 0)
{
m_intermediates[1] = tangent_scale_factor<T>() /*T(1U)*/;
tn[0U] = T(0U);
tn[1U] = tangent_scale_factor<T>()/* T(1U)*/;
BOOST_MATH_INSTRUMENT_VARIABLE(tn[0]);
BOOST_MATH_INSTRUMENT_VARIABLE(tn[1]);
}
for(std::size_t i = std::max<size_t>(2, prev_size); i < m; i++)
{
bool overflow_check = false;
if(i >= min_overflow_index && (boost::math::tools::max_value<T>() / (i-1) < m_intermediates[1]) )
{
std::fill(tn.begin() + i, tn.end(), boost::math::tools::max_value<T>());
break;
}
m_intermediates[1] = m_intermediates[1] * (i-1);
for(std::size_t j = 2; j <= i; j++)
{
overflow_check =
(i >= min_overflow_index) && (
(boost::math::tools::max_value<T>() / (i - j) < m_intermediates[j])
|| (boost::math::tools::max_value<T>() / (i - j + 2) < m_intermediates[j-1])
|| (boost::math::tools::max_value<T>() - m_intermediates[j] * (i - j) < m_intermediates[j-1] * (i - j + 2))
|| ((boost::math::isinf)(m_intermediates[j]))
);
if(overflow_check)
{
std::fill(tn.begin() + i, tn.end(), boost::math::tools::max_value<T>());
break;
}
m_intermediates[j] = m_intermediates[j] * (i - j) + m_intermediates[j-1] * (i - j + 2);
}
if(overflow_check)
break; // already filled the tn...
tn[static_cast<typename container_type::size_type>(i)] = m_intermediates[i];
BOOST_MATH_INSTRUMENT_VARIABLE(i);
BOOST_MATH_INSTRUMENT_VARIABLE(tn[static_cast<typename container_type::size_type>(i)]);
}
}
void tangent_numbers_series(const std::size_t m)
{
BOOST_MATH_STD_USING
static const std::size_t min_overflow_index = b2n_overflow_limit<T, Policy>() - 1;
typename container_type::size_type old_size = bn.size();
tangent(m);
bn.resize(static_cast<typename container_type::size_type>(m));
if(!old_size)
{
bn[0] = 1;
old_size = 1;
}
T power_two(ldexp(T(1), static_cast<int>(2 * old_size)));
for(std::size_t i = old_size; i < m; i++)
{
T b(static_cast<T>(i * 2));
//
// Not only do we need to take care to avoid spurious over/under flow in
// the calculation, but we also need to avoid overflow altogether in case
// we're calculating with a type where "bad things" happen in that case:
//
b = b / (power_two * tangent_scale_factor<T>());
b /= (power_two - 1);
bool overflow_check = (i >= min_overflow_index) && (tools::max_value<T>() / tn[static_cast<typename container_type::size_type>(i)] < b);
if(overflow_check)
{
m_overflow_limit = i;
while(i < m)
{
b = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : tools::max_value<T>();
bn[static_cast<typename container_type::size_type>(i)] = ((i % 2U) ? b : T(-b));
++i;
}
break;
}
else
{
b *= tn[static_cast<typename container_type::size_type>(i)];
}
power_two = ldexp(power_two, 2);
const bool b_neg = i % 2 == 0;
bn[static_cast<typename container_type::size_type>(i)] = ((!b_neg) ? b : T(-b));
}
}
template <class OutputIterator>
OutputIterator copy_bernoulli_numbers(OutputIterator out, std::size_t start, std::size_t n, const Policy& pol)
{
//
// There are basically 3 thread safety options:
//
// 1) There are no threads (BOOST_HAS_THREADS is not defined).
// 2) There are threads, but we do not have a true atomic integer type,
// in this case we just use a mutex to guard against race conditions.
// 3) There are threads, and we have an atomic integer: in this case we can
// use the double-checked locking pattern to avoid thread synchronisation
// when accessing values already in the cache.
//
// First off handle the common case for overflow and/or asymptotic expansion:
//
if(start + n > bn.capacity())
{
if(start < bn.capacity())
{
out = copy_bernoulli_numbers(out, start, bn.capacity() - start, pol);
n -= bn.capacity() - start;
start = static_cast<std::size_t>(bn.capacity());
}
if(start < b2n_overflow_limit<T, Policy>() + 2u)
{
for(; n; ++start, --n)
{
*out = b2n_asymptotic<T, Policy>(static_cast<typename container_type::size_type>(start * 2U));
++out;
}
}
for(; n; ++start, --n)
{
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(start), pol);
++out;
}
return out;
}
#if 1 // !defined(BOOST_HAS_THREADS)
//
// Single threaded code, very simple:
//
if(m_current_precision < boost::math::tools::digits<T>())
{
bn.clear();
tn.clear();
m_intermediates.clear();
m_current_precision = boost::math::tools::digits<T>();
}
if(start + n >= bn.size())
{
std::size_t new_size = (std::min)((std::max)((std::max)(std::size_t(start + n), std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
tangent_numbers_series(new_size);
}
for(std::size_t i = (std::max)(std::size_t(max_bernoulli_b2n<T>::value + 1), start); i < start + n; ++i)
{
*out = (i >= m_overflow_limit) ? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol) : bn[i];
++out;
}
#elif defined(BOOST_MATH_NO_ATOMIC_INT)
//
// We need to grab a mutex every time we get here, for both readers and writers:
//
boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
if(m_current_precision < boost::math::tools::digits<T>())
{
bn.clear();
tn.clear();
m_intermediates.clear();
m_current_precision = boost::math::tools::digits<T>();
}
if(start + n >= bn.size())
{
std::size_t new_size = (std::min)((std::max)((std::max)(std::size_t(start + n), std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
tangent_numbers_series(new_size);
}
for(std::size_t i = (std::max)(std::size_t(max_bernoulli_b2n<T>::value + 1), start); i < start + n; ++i)
{
*out = (i >= m_overflow_limit) ? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol) : bn[i];
++out;
}
#else
//
// Double-checked locking pattern, lets us access cached already cached values
// without locking:
//
// Get the counter and see if we need to calculate more constants:
//
if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
|| (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
{
boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
|| (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
{
if(static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>())
{
bn.clear();
tn.clear();
m_intermediates.clear();
m_counter.store(0, BOOST_MATH_ATOMIC_NS::memory_order_release);
m_current_precision = boost::math::tools::digits<T>();
}
if(start + n >= bn.size())
{
std::size_t new_size = (std::min)((std::max)((std::max)(std::size_t(start + n), std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
tangent_numbers_series(new_size);
}
m_counter.store(static_cast<atomic_integer_type>(bn.size()), BOOST_MATH_ATOMIC_NS::memory_order_release);
}
}
for(std::size_t i = (std::max)(static_cast<std::size_t>(max_bernoulli_b2n<T>::value + 1), start); i < start + n; ++i)
{
*out = (i >= m_overflow_limit) ? policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol) : bn[static_cast<typename container_type::size_type>(i)];
++out;
}
#endif
return out;
}
template <class OutputIterator>
OutputIterator copy_tangent_numbers(OutputIterator out, std::size_t start, std::size_t n, const Policy& pol)
{
//
// There are basically 3 thread safety options:
//
// 1) There are no threads (BOOST_HAS_THREADS is not defined).
// 2) There are threads, but we do not have a true atomic integer type,
// in this case we just use a mutex to guard against race conditions.
// 3) There are threads, and we have an atomic integer: in this case we can
// use the double-checked locking pattern to avoid thread synchronisation
// when accessing values already in the cache.
//
//
// First off handle the common case for overflow and/or asymptotic expansion:
//
if(start + n > bn.capacity())
{
if(start < bn.capacity())
{
out = copy_tangent_numbers(out, start, bn.capacity() - start, pol);
n -= bn.capacity() - start;
start = static_cast<std::size_t>(bn.capacity());
}
if(start < b2n_overflow_limit<T, Policy>() + 2u)
{
for(; n; ++start, --n)
{
*out = t2n_asymptotic<T, Policy>(static_cast<typename container_type::size_type>(start));
++out;
}
}
for(; n; ++start, --n)
{
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(start), pol);
++out;
}
return out;
}
#if 1 // !defined(BOOST_HAS_THREADS)
//
// Single threaded code, very simple:
//
if(m_current_precision < boost::math::tools::digits<T>())
{
bn.clear();
tn.clear();
m_intermediates.clear();
m_current_precision = boost::math::tools::digits<T>();
}
if(start + n >= bn.size())
{
std::size_t new_size = (std::min)((std::max)((std::max)(start + n, std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
tangent_numbers_series(new_size);
}
for(std::size_t i = start; i < start + n; ++i)
{
if(i >= m_overflow_limit)
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
else
{
if(tools::max_value<T>() * tangent_scale_factor<T>() < tn[static_cast<typename container_type::size_type>(i)])
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
else
*out = tn[static_cast<typename container_type::size_type>(i)] / tangent_scale_factor<T>();
}
++out;
}
#elif defined(BOOST_MATH_NO_ATOMIC_INT)
//
// We need to grab a mutex every time we get here, for both readers and writers:
//
boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
if(m_current_precision < boost::math::tools::digits<T>())
{
bn.clear();
tn.clear();
m_intermediates.clear();
m_current_precision = boost::math::tools::digits<T>();
}
if(start + n >= bn.size())
{
std::size_t new_size = (std::min)((std::max)((std::max)(start + n, std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
tangent_numbers_series(new_size);
}
for(std::size_t i = start; i < start + n; ++i)
{
if(i >= m_overflow_limit)
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
else
{
if(tools::max_value<T>() * tangent_scale_factor<T>() < tn[static_cast<typename container_type::size_type>(i)])
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
else
*out = tn[static_cast<typename container_type::size_type>(i)] / tangent_scale_factor<T>();
}
++out;
}
#else
//
// Double-checked locking pattern, lets us access cached already cached values
// without locking:
//
// Get the counter and see if we need to calculate more constants:
//
if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
|| (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
{
boost::detail::lightweight_mutex::scoped_lock l(m_mutex);
if((static_cast<std::size_t>(m_counter.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < start + n)
|| (static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>()))
{
if(static_cast<int>(m_current_precision.load(BOOST_MATH_ATOMIC_NS::memory_order_consume)) < boost::math::tools::digits<T>())
{
bn.clear();
tn.clear();
m_intermediates.clear();
m_counter.store(0, BOOST_MATH_ATOMIC_NS::memory_order_release);
m_current_precision = boost::math::tools::digits<T>();
}
if(start + n >= bn.size())
{
std::size_t new_size = (std::min)((std::max)((std::max)(start + n, std::size_t(bn.size() + 20)), std::size_t(50)), std::size_t(bn.capacity()));
tangent_numbers_series(new_size);
}
m_counter.store(static_cast<atomic_integer_type>(bn.size()), BOOST_MATH_ATOMIC_NS::memory_order_release);
}
}
for(std::size_t i = start; i < start + n; ++i)
{
if(i >= m_overflow_limit)
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
else
{
if(tools::max_value<T>() * tangent_scale_factor<T>() < tn[static_cast<typename container_type::size_type>(i)])
*out = policies::raise_overflow_error<T>("boost::math::bernoulli_b2n<%1%>(std::size_t)", 0, T(i), pol);
else
*out = tn[static_cast<typename container_type::size_type>(i)] / tangent_scale_factor<T>();
}
++out;
}
#endif
return out;
}
private:
//
// The caches for Bernoulli and tangent numbers, once allocated,
// these must NEVER EVER reallocate as it breaks our thread
// safety guarantees:
//
fixed_vector<T> bn, tn;
std::vector<T> m_intermediates;
// The value at which we know overflow has already occurred for the Bn:
std::size_t m_overflow_limit;
#if 1 // !defined(BOOST_HAS_THREADS)
int m_current_precision;
#elif defined(BOOST_MATH_NO_ATOMIC_INT)
boost::detail::lightweight_mutex m_mutex;
int m_current_precision;
#else
boost::detail::lightweight_mutex m_mutex;
atomic_counter_type m_counter, m_current_precision;
#endif
};
template <class T, class Policy>
inline bernoulli_numbers_cache<T, Policy>& get_bernoulli_numbers_cache()
{
//
// Force this function to be called at program startup so all the static variables
// get initailzed then (thread safety).
//
bernoulli_initializer<T, Policy>::force_instantiate();
static bernoulli_numbers_cache<T, Policy> data;
return data;
}
}}}
#endif // BOOST_MATH_BERNOULLI_DETAIL_HPP
|