1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SF_ERF_INV_HPP
#define BOOST_MATH_SF_ERF_INV_HPP
#ifdef _MSC_VER
#pragma once
#pragma warning(push)
#pragma warning(disable:4127) // Conditional expression is constant
#pragma warning(disable:4702) // Unreachable code: optimization warning
#endif
namespace boost{ namespace math{
namespace detail{
//
// The inverse erf and erfc functions share a common implementation,
// this version is for 80-bit long double's and smaller:
//
template <class T, class Policy>
T erf_inv_imp(const T& p, const T& q, const Policy&, const boost::mpl::int_<64>*)
{
BOOST_MATH_STD_USING // for ADL of std names.
T result = 0;
if(p <= 0.5)
{
//
// Evaluate inverse erf using the rational approximation:
//
// x = p(p+10)(Y+R(p))
//
// Where Y is a constant, and R(p) is optimised for a low
// absolute error compared to |Y|.
//
// double: Max error found: 2.001849e-18
// long double: Max error found: 1.017064e-20
// Maximum Deviation Found (actual error term at infinite precision) 8.030e-21
//
static const float Y = 0.0891314744949340820313f;
static const T P[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.000508781949658280665617),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.00836874819741736770379),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0334806625409744615033),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.0126926147662974029034),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.0365637971411762664006),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0219878681111168899165),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.00822687874676915743155),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.00538772965071242932965)
};
static const T Q[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.970005043303290640362),
BOOST_MATH_BIG_CONSTANT(T, 64, -1.56574558234175846809),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.56221558398423026363),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.662328840472002992063),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.71228902341542847553),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.0527396382340099713954),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0795283687341571680018),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.00233393759374190016776),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.000886216390456424707504)
};
T g = p * (p + 10);
T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
result = g * Y + g * r;
}
else if(q >= 0.25)
{
//
// Rational approximation for 0.5 > q >= 0.25
//
// x = sqrt(-2*log(q)) / (Y + R(q))
//
// Where Y is a constant, and R(q) is optimised for a low
// absolute error compared to Y.
//
// double : Max error found: 7.403372e-17
// long double : Max error found: 6.084616e-20
// Maximum Deviation Found (error term) 4.811e-20
//
static const float Y = 2.249481201171875f;
static const T P[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.202433508355938759655),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.105264680699391713268),
BOOST_MATH_BIG_CONSTANT(T, 64, 8.37050328343119927838),
BOOST_MATH_BIG_CONSTANT(T, 64, 17.6447298408374015486),
BOOST_MATH_BIG_CONSTANT(T, 64, -18.8510648058714251895),
BOOST_MATH_BIG_CONSTANT(T, 64, -44.6382324441786960818),
BOOST_MATH_BIG_CONSTANT(T, 64, 17.445385985570866523),
BOOST_MATH_BIG_CONSTANT(T, 64, 21.1294655448340526258),
BOOST_MATH_BIG_CONSTANT(T, 64, -3.67192254707729348546)
};
static const T Q[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 6.24264124854247537712),
BOOST_MATH_BIG_CONSTANT(T, 64, 3.9713437953343869095),
BOOST_MATH_BIG_CONSTANT(T, 64, -28.6608180499800029974),
BOOST_MATH_BIG_CONSTANT(T, 64, -20.1432634680485188801),
BOOST_MATH_BIG_CONSTANT(T, 64, 48.5609213108739935468),
BOOST_MATH_BIG_CONSTANT(T, 64, 10.8268667355460159008),
BOOST_MATH_BIG_CONSTANT(T, 64, -22.6436933413139721736),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.72114765761200282724)
};
T g = sqrt(-2 * log(q));
T xs = q - 0.25f;
T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
result = g / (Y + r);
}
else
{
//
// For q < 0.25 we have a series of rational approximations all
// of the general form:
//
// let: x = sqrt(-log(q))
//
// Then the result is given by:
//
// x(Y+R(x-B))
//
// where Y is a constant, B is the lowest value of x for which
// the approximation is valid, and R(x-B) is optimised for a low
// absolute error compared to Y.
//
// Note that almost all code will really go through the first
// or maybe second approximation. After than we're dealing with very
// small input values indeed: 80 and 128 bit long double's go all the
// way down to ~ 1e-5000 so the "tail" is rather long...
//
T x = sqrt(-log(q));
if(x < 3)
{
// Max error found: 1.089051e-20
static const float Y = 0.807220458984375f;
static const T P[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.131102781679951906451),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.163794047193317060787),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.117030156341995252019),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.387079738972604337464),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.337785538912035898924),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.142869534408157156766),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0290157910005329060432),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.00214558995388805277169),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.679465575181126350155e-6),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.285225331782217055858e-7),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.681149956853776992068e-9)
};
static const T Q[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 3.46625407242567245975),
BOOST_MATH_BIG_CONSTANT(T, 64, 5.38168345707006855425),
BOOST_MATH_BIG_CONSTANT(T, 64, 4.77846592945843778382),
BOOST_MATH_BIG_CONSTANT(T, 64, 2.59301921623620271374),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.848854343457902036425),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.152264338295331783612),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.01105924229346489121)
};
T xs = x - 1.125f;
T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
result = Y * x + R * x;
}
else if(x < 6)
{
// Max error found: 8.389174e-21
static const float Y = 0.93995571136474609375f;
static const T P[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.0350353787183177984712),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.00222426529213447927281),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0185573306514231072324),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.00950804701325919603619),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.00187123492819559223345),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.000157544617424960554631),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.460469890584317994083e-5),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.230404776911882601748e-9),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.266339227425782031962e-11)
};
static const T Q[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.3653349817554063097),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.762059164553623404043),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.220091105764131249824),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0341589143670947727934),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.00263861676657015992959),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.764675292302794483503e-4)
};
T xs = x - 3;
T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
result = Y * x + R * x;
}
else if(x < 18)
{
// Max error found: 1.481312e-19
static const float Y = 0.98362827301025390625f;
static const T P[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.0167431005076633737133),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.00112951438745580278863),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.00105628862152492910091),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.000209386317487588078668),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.149624783758342370182e-4),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.449696789927706453732e-6),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.462596163522878599135e-8),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.281128735628831791805e-13),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.99055709973310326855e-16)
};
static const T Q[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.591429344886417493481),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.138151865749083321638),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0160746087093676504695),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.000964011807005165528527),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.275335474764726041141e-4),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.282243172016108031869e-6)
};
T xs = x - 6;
T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
result = Y * x + R * x;
}
else if(x < 44)
{
// Max error found: 5.697761e-20
static const float Y = 0.99714565277099609375f;
static const T P[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.0024978212791898131227),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.779190719229053954292e-5),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.254723037413027451751e-4),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.162397777342510920873e-5),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.396341011304801168516e-7),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.411632831190944208473e-9),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.145596286718675035587e-11),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.116765012397184275695e-17)
};
static const T Q[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.207123112214422517181),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0169410838120975906478),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.000690538265622684595676),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.145007359818232637924e-4),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.144437756628144157666e-6),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.509761276599778486139e-9)
};
T xs = x - 18;
T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
result = Y * x + R * x;
}
else
{
// Max error found: 1.279746e-20
static const float Y = 0.99941349029541015625f;
static const T P[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.000539042911019078575891),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.28398759004727721098e-6),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.899465114892291446442e-6),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.229345859265920864296e-7),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.225561444863500149219e-9),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.947846627503022684216e-12),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.135880130108924861008e-14),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.348890393399948882918e-21)
};
static const T Q[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0845746234001899436914),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.00282092984726264681981),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.468292921940894236786e-4),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.399968812193862100054e-6),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.161809290887904476097e-8),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.231558608310259605225e-11)
};
T xs = x - 44;
T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
result = Y * x + R * x;
}
}
return result;
}
template <class T, class Policy>
struct erf_roots
{
boost::math::tuple<T,T,T> operator()(const T& guess)
{
BOOST_MATH_STD_USING
T derivative = sign * (2 / sqrt(constants::pi<T>())) * exp(-(guess * guess));
T derivative2 = -2 * guess * derivative;
return boost::math::make_tuple(((sign > 0) ? static_cast<T>(boost::math::erf(guess, Policy()) - target) : static_cast<T>(boost::math::erfc(guess, Policy())) - target), derivative, derivative2);
}
erf_roots(T z, int s) : target(z), sign(s) {}
private:
T target;
int sign;
};
template <class T, class Policy>
T erf_inv_imp(const T& p, const T& q, const Policy& pol, const boost::mpl::int_<0>*)
{
//
// Generic version, get a guess that's accurate to 64-bits (10^-19)
//
T guess = erf_inv_imp(p, q, pol, static_cast<mpl::int_<64> const*>(0));
T result;
//
// If T has more bit's than 64 in it's mantissa then we need to iterate,
// otherwise we can just return the result:
//
if(policies::digits<T, Policy>() > 64)
{
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
if(p <= 0.5)
{
result = tools::halley_iterate(detail::erf_roots<typename remove_cv<T>::type, Policy>(p, 1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
}
else
{
result = tools::halley_iterate(detail::erf_roots<typename remove_cv<T>::type, Policy>(q, -1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
}
policies::check_root_iterations<T>("boost::math::erf_inv<%1%>", max_iter, pol);
}
else
{
result = guess;
}
return result;
}
template <class T, class Policy>
struct erf_inv_initializer
{
struct init
{
init()
{
do_init();
}
static bool is_value_non_zero(T);
static void do_init()
{
// If std::numeric_limits<T>::digits is zero, we must not call
// our inituialization code here as the precision presumably
// varies at runtime, and will not have been set yet.
if(std::numeric_limits<T>::digits)
{
boost::math::erf_inv(static_cast<T>(0.25), Policy());
boost::math::erf_inv(static_cast<T>(0.55), Policy());
boost::math::erf_inv(static_cast<T>(0.95), Policy());
boost::math::erfc_inv(static_cast<T>(1e-15), Policy());
// These following initializations must not be called if
// type T can not hold the relevant values without
// underflow to zero. We check this at runtime because
// some tools such as valgrind silently change the precision
// of T at runtime, and numeric_limits basically lies!
if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130))))
boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130)), Policy());
// Some compilers choke on constants that would underflow, even in code that isn't instantiated
// so try and filter these cases out in the preprocessor:
#if LDBL_MAX_10_EXP >= 800
if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800))))
boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800)), Policy());
if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900))))
boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900)), Policy());
#else
if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800))))
boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800)), Policy());
if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900))))
boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900)), Policy());
#endif
}
}
void force_instantiate()const{}
};
static const init initializer;
static void force_instantiate()
{
initializer.force_instantiate();
}
};
template <class T, class Policy>
const typename erf_inv_initializer<T, Policy>::init erf_inv_initializer<T, Policy>::initializer;
template <class T, class Policy>
bool erf_inv_initializer<T, Policy>::init::is_value_non_zero(T v)
{
// This needs to be non-inline to detect whether v is non zero at runtime
// rather than at compile time, only relevant when running under valgrind
// which changes long double's to double's on the fly.
return v != 0;
}
} // namespace detail
template <class T, class Policy>
typename tools::promote_args<T>::type erfc_inv(T z, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
//
// Begin by testing for domain errors, and other special cases:
//
static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)";
if((z < 0) || (z > 2))
return policies::raise_domain_error<result_type>(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%).", z, pol);
if(z == 0)
return policies::raise_overflow_error<result_type>(function, 0, pol);
if(z == 2)
return -policies::raise_overflow_error<result_type>(function, 0, pol);
//
// Normalise the input, so it's in the range [0,1], we will
// negate the result if z is outside that range. This is a simple
// application of the erfc reflection formula: erfc(-z) = 2 - erfc(z)
//
result_type p, q, s;
if(z > 1)
{
q = 2 - z;
p = 1 - q;
s = -1;
}
else
{
p = 1 - z;
q = z;
s = 1;
}
//
// A bit of meta-programming to figure out which implementation
// to use, based on the number of bits in the mantissa of T:
//
typedef typename policies::precision<result_type, Policy>::type precision_type;
typedef typename mpl::if_<
mpl::or_<mpl::less_equal<precision_type, mpl::int_<0> >, mpl::greater<precision_type, mpl::int_<64> > >,
mpl::int_<0>,
mpl::int_<64>
>::type tag_type;
//
// Likewise use internal promotion, so we evaluate at a higher
// precision internally if it's appropriate:
//
typedef typename policies::evaluation<result_type, Policy>::type eval_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate();
//
// And get the result, negating where required:
//
return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(0)), function);
}
template <class T, class Policy>
typename tools::promote_args<T>::type erf_inv(T z, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
//
// Begin by testing for domain errors, and other special cases:
//
static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)";
if((z < -1) || (z > 1))
return policies::raise_domain_error<result_type>(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%).", z, pol);
if(z == 1)
return policies::raise_overflow_error<result_type>(function, 0, pol);
if(z == -1)
return -policies::raise_overflow_error<result_type>(function, 0, pol);
if(z == 0)
return 0;
//
// Normalise the input, so it's in the range [0,1], we will
// negate the result if z is outside that range. This is a simple
// application of the erf reflection formula: erf(-z) = -erf(z)
//
result_type p, q, s;
if(z < 0)
{
p = -z;
q = 1 - p;
s = -1;
}
else
{
p = z;
q = 1 - z;
s = 1;
}
//
// A bit of meta-programming to figure out which implementation
// to use, based on the number of bits in the mantissa of T:
//
typedef typename policies::precision<result_type, Policy>::type precision_type;
typedef typename mpl::if_<
mpl::or_<mpl::less_equal<precision_type, mpl::int_<0> >, mpl::greater<precision_type, mpl::int_<64> > >,
mpl::int_<0>,
mpl::int_<64>
>::type tag_type;
//
// Likewise use internal promotion, so we evaluate at a higher
// precision internally if it's appropriate:
//
typedef typename policies::evaluation<result_type, Policy>::type eval_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
//
// Likewise use internal promotion, so we evaluate at a higher
// precision internally if it's appropriate:
//
typedef typename policies::evaluation<result_type, Policy>::type eval_type;
detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate();
//
// And get the result, negating where required:
//
return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(0)), function);
}
template <class T>
inline typename tools::promote_args<T>::type erfc_inv(T z)
{
return erfc_inv(z, policies::policy<>());
}
template <class T>
inline typename tools::promote_args<T>::type erf_inv(T z)
{
return erf_inv(z, policies::policy<>());
}
} // namespace math
} // namespace boost
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // BOOST_MATH_SF_ERF_INV_HPP
|