1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This is not a complete header file, it is included by gamma.hpp
// after it has defined it's definitions. This inverts the incomplete
// gamma functions P and Q on the first parameter "a" using a generic
// root finding algorithm (TOMS Algorithm 748).
//
#ifndef BOOST_MATH_SP_DETAIL_GAMMA_INVA
#define BOOST_MATH_SP_DETAIL_GAMMA_INVA
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/toms748_solve.hpp>
#include <boost/cstdint.hpp>
namespace boost{ namespace math{ namespace detail{
template <class T, class Policy>
struct gamma_inva_t
{
gamma_inva_t(T z_, T p_, bool invert_) : z(z_), p(p_), invert(invert_) {}
T operator()(T a)
{
return invert ? p - boost::math::gamma_q(a, z, Policy()) : boost::math::gamma_p(a, z, Policy()) - p;
}
private:
T z, p;
bool invert;
};
template <class T, class Policy>
T inverse_poisson_cornish_fisher(T lambda, T p, T q, const Policy& pol)
{
BOOST_MATH_STD_USING
// mean:
T m = lambda;
// standard deviation:
T sigma = sqrt(lambda);
// skewness
T sk = 1 / sigma;
// kurtosis:
// T k = 1/lambda;
// Get the inverse of a std normal distribution:
T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>();
// Set the sign:
if(p < 0.5)
x = -x;
T x2 = x * x;
// w is correction term due to skewness
T w = x + sk * (x2 - 1) / 6;
/*
// Add on correction due to kurtosis.
// Disabled for now, seems to make things worse?
//
if(lambda >= 10)
w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36;
*/
w = m + sigma * w;
return w > tools::min_value<T>() ? w : tools::min_value<T>();
}
template <class T, class Policy>
T gamma_inva_imp(const T& z, const T& p, const T& q, const Policy& pol)
{
BOOST_MATH_STD_USING // for ADL of std lib math functions
//
// Special cases first:
//
if(p == 0)
{
return policies::raise_overflow_error<T>("boost::math::gamma_p_inva<%1%>(%1%, %1%)", 0, Policy());
}
if(q == 0)
{
return tools::min_value<T>();
}
//
// Function object, this is the functor whose root
// we have to solve:
//
gamma_inva_t<T, Policy> f(z, (p < q) ? p : q, (p < q) ? false : true);
//
// Tolerance: full precision.
//
tools::eps_tolerance<T> tol(policies::digits<T, Policy>());
//
// Now figure out a starting guess for what a may be,
// we'll start out with a value that'll put p or q
// right bang in the middle of their range, the functions
// are quite sensitive so we should need too many steps
// to bracket the root from there:
//
T guess;
T factor = 8;
if(z >= 1)
{
//
// We can use the relationship between the incomplete
// gamma function and the poisson distribution to
// calculate an approximate inverse, for large z
// this is actually pretty accurate, but it fails badly
// when z is very small. Also set our step-factor according
// to how accurate we think the result is likely to be:
//
guess = 1 + inverse_poisson_cornish_fisher(z, q, p, pol);
if(z > 5)
{
if(z > 1000)
factor = 1.01f;
else if(z > 50)
factor = 1.1f;
else if(guess > 10)
factor = 1.25f;
else
factor = 2;
if(guess < 1.1)
factor = 8;
}
}
else if(z > 0.5)
{
guess = z * 1.2f;
}
else
{
guess = -0.4f / log(z);
}
//
// Max iterations permitted:
//
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
//
// Use our generic derivative-free root finding procedure.
// We could use Newton steps here, taking the PDF of the
// Poisson distribution as our derivative, but that's
// even worse performance-wise than the generic method :-(
//
std::pair<T, T> r = bracket_and_solve_root(f, guess, factor, false, tol, max_iter, pol);
if(max_iter >= policies::get_max_root_iterations<Policy>())
return policies::raise_evaluation_error<T>("boost::math::gamma_p_inva<%1%>(%1%, %1%)", "Unable to locate the root within a reasonable number of iterations, closest approximation so far was %1%", r.first, pol);
return (r.first + r.second) / 2;
}
} // namespace detail
template <class T1, class T2, class Policy>
inline typename tools::promote_args<T1, T2>::type
gamma_p_inva(T1 x, T2 p, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
if(p == 0)
{
policies::raise_overflow_error<result_type>("boost::math::gamma_p_inva<%1%>(%1%, %1%)", 0, Policy());
}
if(p == 1)
{
return tools::min_value<result_type>();
}
return policies::checked_narrowing_cast<result_type, forwarding_policy>(
detail::gamma_inva_imp(
static_cast<value_type>(x),
static_cast<value_type>(p),
static_cast<value_type>(1 - static_cast<value_type>(p)),
pol), "boost::math::gamma_p_inva<%1%>(%1%, %1%)");
}
template <class T1, class T2, class Policy>
inline typename tools::promote_args<T1, T2>::type
gamma_q_inva(T1 x, T2 q, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
if(q == 1)
{
policies::raise_overflow_error<result_type>("boost::math::gamma_q_inva<%1%>(%1%, %1%)", 0, Policy());
}
if(q == 0)
{
return tools::min_value<result_type>();
}
return policies::checked_narrowing_cast<result_type, forwarding_policy>(
detail::gamma_inva_imp(
static_cast<value_type>(x),
static_cast<value_type>(1 - static_cast<value_type>(q)),
static_cast<value_type>(q),
pol), "boost::math::gamma_q_inva<%1%>(%1%, %1%)");
}
template <class T1, class T2>
inline typename tools::promote_args<T1, T2>::type
gamma_p_inva(T1 x, T2 p)
{
return boost::math::gamma_p_inva(x, p, policies::policy<>());
}
template <class T1, class T2>
inline typename tools::promote_args<T1, T2>::type
gamma_q_inva(T1 x, T2 q)
{
return boost::math::gamma_q_inva(x, q, policies::policy<>());
}
} // namespace math
} // namespace boost
#endif // BOOST_MATH_SP_DETAIL_GAMMA_INVA
|