1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_FUNCTIONS_IBETA_INVERSE_HPP
#define BOOST_MATH_SPECIAL_FUNCTIONS_IBETA_INVERSE_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/special_functions/erf.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/math/special_functions/detail/t_distribution_inv.hpp>
namespace boost{ namespace math{ namespace detail{
//
// Helper object used by root finding
// code to convert eta to x.
//
template <class T>
struct temme_root_finder
{
temme_root_finder(const T t_, const T a_) : t(t_), a(a_) {}
boost::math::tuple<T, T> operator()(T x)
{
BOOST_MATH_STD_USING // ADL of std names
T y = 1 - x;
if(y == 0)
{
T big = tools::max_value<T>() / 4;
return boost::math::make_tuple(static_cast<T>(-big), static_cast<T>(-big));
}
if(x == 0)
{
T big = tools::max_value<T>() / 4;
return boost::math::make_tuple(static_cast<T>(-big), big);
}
T f = log(x) + a * log(y) + t;
T f1 = (1 / x) - (a / (y));
return boost::math::make_tuple(f, f1);
}
private:
T t, a;
};
//
// See:
// "Asymptotic Inversion of the Incomplete Beta Function"
// N.M. Temme
// Journal of Computation and Applied Mathematics 41 (1992) 145-157.
// Section 2.
//
template <class T, class Policy>
T temme_method_1_ibeta_inverse(T a, T b, T z, const Policy& pol)
{
BOOST_MATH_STD_USING // ADL of std names
const T r2 = sqrt(T(2));
//
// get the first approximation for eta from the inverse
// error function (Eq: 2.9 and 2.10).
//
T eta0 = boost::math::erfc_inv(2 * z, pol);
eta0 /= -sqrt(a / 2);
T terms[4] = { eta0 };
T workspace[7];
//
// calculate powers:
//
T B = b - a;
T B_2 = B * B;
T B_3 = B_2 * B;
//
// Calculate correction terms:
//
// See eq following 2.15:
workspace[0] = -B * r2 / 2;
workspace[1] = (1 - 2 * B) / 8;
workspace[2] = -(B * r2 / 48);
workspace[3] = T(-1) / 192;
workspace[4] = -B * r2 / 3840;
terms[1] = tools::evaluate_polynomial(workspace, eta0, 5);
// Eq Following 2.17:
workspace[0] = B * r2 * (3 * B - 2) / 12;
workspace[1] = (20 * B_2 - 12 * B + 1) / 128;
workspace[2] = B * r2 * (20 * B - 1) / 960;
workspace[3] = (16 * B_2 + 30 * B - 15) / 4608;
workspace[4] = B * r2 * (21 * B + 32) / 53760;
workspace[5] = (-32 * B_2 + 63) / 368640;
workspace[6] = -B * r2 * (120 * B + 17) / 25804480;
terms[2] = tools::evaluate_polynomial(workspace, eta0, 7);
// Eq Following 2.17:
workspace[0] = B * r2 * (-75 * B_2 + 80 * B - 16) / 480;
workspace[1] = (-1080 * B_3 + 868 * B_2 - 90 * B - 45) / 9216;
workspace[2] = B * r2 * (-1190 * B_2 + 84 * B + 373) / 53760;
workspace[3] = (-2240 * B_3 - 2508 * B_2 + 2100 * B - 165) / 368640;
terms[3] = tools::evaluate_polynomial(workspace, eta0, 4);
//
// Bring them together to get a final estimate for eta:
//
T eta = tools::evaluate_polynomial(terms, T(1/a), 4);
//
// now we need to convert eta to x, by solving the appropriate
// quadratic equation:
//
T eta_2 = eta * eta;
T c = -exp(-eta_2 / 2);
T x;
if(eta_2 == 0)
x = 0.5;
else
x = (1 + eta * sqrt((1 + c) / eta_2)) / 2;
BOOST_ASSERT(x >= 0);
BOOST_ASSERT(x <= 1);
BOOST_ASSERT(eta * (x - 0.5) >= 0);
#ifdef BOOST_INSTRUMENT
std::cout << "Estimating x with Temme method 1: " << x << std::endl;
#endif
return x;
}
//
// See:
// "Asymptotic Inversion of the Incomplete Beta Function"
// N.M. Temme
// Journal of Computation and Applied Mathematics 41 (1992) 145-157.
// Section 3.
//
template <class T, class Policy>
T temme_method_2_ibeta_inverse(T /*a*/, T /*b*/, T z, T r, T theta, const Policy& pol)
{
BOOST_MATH_STD_USING // ADL of std names
//
// Get first estimate for eta, see Eq 3.9 and 3.10,
// but note there is a typo in Eq 3.10:
//
T eta0 = boost::math::erfc_inv(2 * z, pol);
eta0 /= -sqrt(r / 2);
T s = sin(theta);
T c = cos(theta);
//
// Now we need to purturb eta0 to get eta, which we do by
// evaluating the polynomial in 1/r at the bottom of page 151,
// to do this we first need the error terms e1, e2 e3
// which we'll fill into the array "terms". Since these
// terms are themselves polynomials, we'll need another
// array "workspace" to calculate those...
//
T terms[4] = { eta0 };
T workspace[6];
//
// some powers of sin(theta)cos(theta) that we'll need later:
//
T sc = s * c;
T sc_2 = sc * sc;
T sc_3 = sc_2 * sc;
T sc_4 = sc_2 * sc_2;
T sc_5 = sc_2 * sc_3;
T sc_6 = sc_3 * sc_3;
T sc_7 = sc_4 * sc_3;
//
// Calculate e1 and put it in terms[1], see the middle of page 151:
//
workspace[0] = (2 * s * s - 1) / (3 * s * c);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co1[] = { -1, -5, 5 };
workspace[1] = -tools::evaluate_even_polynomial(co1, s, 3) / (36 * sc_2);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co2[] = { 1, 21, -69, 46 };
workspace[2] = tools::evaluate_even_polynomial(co2, s, 4) / (1620 * sc_3);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co3[] = { 7, -2, 33, -62, 31 };
workspace[3] = -tools::evaluate_even_polynomial(co3, s, 5) / (6480 * sc_4);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co4[] = { 25, -52, -17, 88, -115, 46 };
workspace[4] = tools::evaluate_even_polynomial(co4, s, 6) / (90720 * sc_5);
terms[1] = tools::evaluate_polynomial(workspace, eta0, 5);
//
// Now evaluate e2 and put it in terms[2]:
//
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co5[] = { 7, 12, -78, 52 };
workspace[0] = -tools::evaluate_even_polynomial(co5, s, 4) / (405 * sc_3);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co6[] = { -7, 2, 183, -370, 185 };
workspace[1] = tools::evaluate_even_polynomial(co6, s, 5) / (2592 * sc_4);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co7[] = { -533, 776, -1835, 10240, -13525, 5410 };
workspace[2] = -tools::evaluate_even_polynomial(co7, s, 6) / (204120 * sc_5);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co8[] = { -1579, 3747, -3372, -15821, 45588, -45213, 15071 };
workspace[3] = -tools::evaluate_even_polynomial(co8, s, 7) / (2099520 * sc_6);
terms[2] = tools::evaluate_polynomial(workspace, eta0, 4);
//
// And e3, and put it in terms[3]:
//
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co9[] = {449, -1259, -769, 6686, -9260, 3704 };
workspace[0] = tools::evaluate_even_polynomial(co9, s, 6) / (102060 * sc_5);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co10[] = { 63149, -151557, 140052, -727469, 2239932, -2251437, 750479 };
workspace[1] = -tools::evaluate_even_polynomial(co10, s, 7) / (20995200 * sc_6);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co11[] = { 29233, -78755, 105222, 146879, -1602610, 3195183, -2554139, 729754 };
workspace[2] = tools::evaluate_even_polynomial(co11, s, 8) / (36741600 * sc_7);
terms[3] = tools::evaluate_polynomial(workspace, eta0, 3);
//
// Bring the correction terms together to evaluate eta,
// this is the last equation on page 151:
//
T eta = tools::evaluate_polynomial(terms, T(1/r), 4);
//
// Now that we have eta we need to back solve for x,
// we seek the value of x that gives eta in Eq 3.2.
// The two methods used are described in section 5.
//
// Begin by defining a few variables we'll need later:
//
T x;
T s_2 = s * s;
T c_2 = c * c;
T alpha = c / s;
alpha *= alpha;
T lu = (-(eta * eta) / (2 * s_2) + log(s_2) + c_2 * log(c_2) / s_2);
//
// Temme doesn't specify what value to switch on here,
// but this seems to work pretty well:
//
if(fabs(eta) < 0.7)
{
//
// Small eta use the expansion Temme gives in the second equation
// of section 5, it's a polynomial in eta:
//
workspace[0] = s * s;
workspace[1] = s * c;
workspace[2] = (1 - 2 * workspace[0]) / 3;
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co12[] = { 1, -13, 13 };
workspace[3] = tools::evaluate_polynomial(co12, workspace[0], 3) / (36 * s * c);
static const BOOST_MATH_INT_TABLE_TYPE(T, int) co13[] = { 1, 21, -69, 46 };
workspace[4] = tools::evaluate_polynomial(co13, workspace[0], 4) / (270 * workspace[0] * c * c);
x = tools::evaluate_polynomial(workspace, eta, 5);
#ifdef BOOST_INSTRUMENT
std::cout << "Estimating x with Temme method 2 (small eta): " << x << std::endl;
#endif
}
else
{
//
// If eta is large we need to solve Eq 3.2 more directly,
// begin by getting an initial approximation for x from
// the last equation on page 155, this is a polynomial in u:
//
T u = exp(lu);
workspace[0] = u;
workspace[1] = alpha;
workspace[2] = 0;
workspace[3] = 3 * alpha * (3 * alpha + 1) / 6;
workspace[4] = 4 * alpha * (4 * alpha + 1) * (4 * alpha + 2) / 24;
workspace[5] = 5 * alpha * (5 * alpha + 1) * (5 * alpha + 2) * (5 * alpha + 3) / 120;
x = tools::evaluate_polynomial(workspace, u, 6);
//
// At this point we may or may not have the right answer, Eq-3.2 has
// two solutions for x for any given eta, however the mapping in 3.2
// is 1:1 with the sign of eta and x-sin^2(theta) being the same.
// So we can check if we have the right root of 3.2, and if not
// switch x for 1-x. This transformation is motivated by the fact
// that the distribution is *almost* symetric so 1-x will be in the right
// ball park for the solution:
//
if((x - s_2) * eta < 0)
x = 1 - x;
#ifdef BOOST_INSTRUMENT
std::cout << "Estimating x with Temme method 2 (large eta): " << x << std::endl;
#endif
}
//
// The final step is a few Newton-Raphson iterations to
// clean up our approximation for x, this is pretty cheap
// in general, and very cheap compared to an incomplete beta
// evaluation. The limits set on x come from the observation
// that the sign of eta and x-sin^2(theta) are the same.
//
T lower, upper;
if(eta < 0)
{
lower = 0;
upper = s_2;
}
else
{
lower = s_2;
upper = 1;
}
//
// If our initial approximation is out of bounds then bisect:
//
if((x < lower) || (x > upper))
x = (lower+upper) / 2;
//
// And iterate:
//
x = tools::newton_raphson_iterate(
temme_root_finder<T>(-lu, alpha), x, lower, upper, policies::digits<T, Policy>() / 2);
return x;
}
//
// See:
// "Asymptotic Inversion of the Incomplete Beta Function"
// N.M. Temme
// Journal of Computation and Applied Mathematics 41 (1992) 145-157.
// Section 4.
//
template <class T, class Policy>
T temme_method_3_ibeta_inverse(T a, T b, T p, T q, const Policy& pol)
{
BOOST_MATH_STD_USING // ADL of std names
//
// Begin by getting an initial approximation for the quantity
// eta from the dominant part of the incomplete beta:
//
T eta0;
if(p < q)
eta0 = boost::math::gamma_q_inv(b, p, pol);
else
eta0 = boost::math::gamma_p_inv(b, q, pol);
eta0 /= a;
//
// Define the variables and powers we'll need later on:
//
T mu = b / a;
T w = sqrt(1 + mu);
T w_2 = w * w;
T w_3 = w_2 * w;
T w_4 = w_2 * w_2;
T w_5 = w_3 * w_2;
T w_6 = w_3 * w_3;
T w_7 = w_4 * w_3;
T w_8 = w_4 * w_4;
T w_9 = w_5 * w_4;
T w_10 = w_5 * w_5;
T d = eta0 - mu;
T d_2 = d * d;
T d_3 = d_2 * d;
T d_4 = d_2 * d_2;
T w1 = w + 1;
T w1_2 = w1 * w1;
T w1_3 = w1 * w1_2;
T w1_4 = w1_2 * w1_2;
//
// Now we need to compute the purturbation error terms that
// convert eta0 to eta, these are all polynomials of polynomials.
// Probably these should be re-written to use tabulated data
// (see examples above), but it's less of a win in this case as we
// need to calculate the individual powers for the denominator terms
// anyway, so we might as well use them for the numerator-polynomials
// as well....
//
// Refer to p154-p155 for the details of these expansions:
//
T e1 = (w + 2) * (w - 1) / (3 * w);
e1 += (w_3 + 9 * w_2 + 21 * w + 5) * d / (36 * w_2 * w1);
e1 -= (w_4 - 13 * w_3 + 69 * w_2 + 167 * w + 46) * d_2 / (1620 * w1_2 * w_3);
e1 -= (7 * w_5 + 21 * w_4 + 70 * w_3 + 26 * w_2 - 93 * w - 31) * d_3 / (6480 * w1_3 * w_4);
e1 -= (75 * w_6 + 202 * w_5 + 188 * w_4 - 888 * w_3 - 1345 * w_2 + 118 * w + 138) * d_4 / (272160 * w1_4 * w_5);
T e2 = (28 * w_4 + 131 * w_3 + 402 * w_2 + 581 * w + 208) * (w - 1) / (1620 * w1 * w_3);
e2 -= (35 * w_6 - 154 * w_5 - 623 * w_4 - 1636 * w_3 - 3983 * w_2 - 3514 * w - 925) * d / (12960 * w1_2 * w_4);
e2 -= (2132 * w_7 + 7915 * w_6 + 16821 * w_5 + 35066 * w_4 + 87490 * w_3 + 141183 * w_2 + 95993 * w + 21640) * d_2 / (816480 * w_5 * w1_3);
e2 -= (11053 * w_8 + 53308 * w_7 + 117010 * w_6 + 163924 * w_5 + 116188 * w_4 - 258428 * w_3 - 677042 * w_2 - 481940 * w - 105497) * d_3 / (14696640 * w1_4 * w_6);
T e3 = -((3592 * w_7 + 8375 * w_6 - 1323 * w_5 - 29198 * w_4 - 89578 * w_3 - 154413 * w_2 - 116063 * w - 29632) * (w - 1)) / (816480 * w_5 * w1_2);
e3 -= (442043 * w_9 + 2054169 * w_8 + 3803094 * w_7 + 3470754 * w_6 + 2141568 * w_5 - 2393568 * w_4 - 19904934 * w_3 - 34714674 * w_2 - 23128299 * w - 5253353) * d / (146966400 * w_6 * w1_3);
e3 -= (116932 * w_10 + 819281 * w_9 + 2378172 * w_8 + 4341330 * w_7 + 6806004 * w_6 + 10622748 * w_5 + 18739500 * w_4 + 30651894 * w_3 + 30869976 * w_2 + 15431867 * w + 2919016) * d_2 / (146966400 * w1_4 * w_7);
//
// Combine eta0 and the error terms to compute eta (Second eqaution p155):
//
T eta = eta0 + e1 / a + e2 / (a * a) + e3 / (a * a * a);
//
// Now we need to solve Eq 4.2 to obtain x. For any given value of
// eta there are two solutions to this equation, and since the distribtion
// may be very skewed, these are not related by x ~ 1-x we used when
// implementing section 3 above. However we know that:
//
// cross < x <= 1 ; iff eta < mu
// x == cross ; iff eta == mu
// 0 <= x < cross ; iff eta > mu
//
// Where cross == 1 / (1 + mu)
// Many thanks to Prof Temme for clarifying this point.
//
// Therefore we'll just jump straight into Newton iterations
// to solve Eq 4.2 using these bounds, and simple bisection
// as the first guess, in practice this converges pretty quickly
// and we only need a few digits correct anyway:
//
if(eta <= 0)
eta = tools::min_value<T>();
T u = eta - mu * log(eta) + (1 + mu) * log(1 + mu) - mu;
T cross = 1 / (1 + mu);
T lower = eta < mu ? cross : 0;
T upper = eta < mu ? 1 : cross;
T x = (lower + upper) / 2;
x = tools::newton_raphson_iterate(
temme_root_finder<T>(u, mu), x, lower, upper, policies::digits<T, Policy>() / 2);
#ifdef BOOST_INSTRUMENT
std::cout << "Estimating x with Temme method 3: " << x << std::endl;
#endif
return x;
}
template <class T, class Policy>
struct ibeta_roots
{
ibeta_roots(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
boost::math::tuple<T, T, T> operator()(T x)
{
BOOST_MATH_STD_USING // ADL of std names
BOOST_FPU_EXCEPTION_GUARD
T f1;
T y = 1 - x;
T f = ibeta_imp(a, b, x, Policy(), invert, true, &f1) - target;
if(invert)
f1 = -f1;
if(y == 0)
y = tools::min_value<T>() * 64;
if(x == 0)
x = tools::min_value<T>() * 64;
T f2 = f1 * (-y * a + (b - 2) * x + 1);
if(fabs(f2) < y * x * tools::max_value<T>())
f2 /= (y * x);
if(invert)
f2 = -f2;
// make sure we don't have a zero derivative:
if(f1 == 0)
f1 = (invert ? -1 : 1) * tools::min_value<T>() * 64;
return boost::math::make_tuple(f, f1, f2);
}
private:
T a, b, target;
bool invert;
};
template <class T, class Policy>
T ibeta_inv_imp(T a, T b, T p, T q, const Policy& pol, T* py)
{
BOOST_MATH_STD_USING // For ADL of math functions.
//
// The flag invert is set to true if we swap a for b and p for q,
// in which case the result has to be subtracted from 1:
//
bool invert = false;
//
// Handle trivial cases first:
//
if(q == 0)
{
if(py) *py = 0;
return 1;
}
else if(p == 0)
{
if(py) *py = 1;
return 0;
}
else if(a == 1)
{
if(b == 1)
{
if(py) *py = 1 - p;
return p;
}
// Change things around so we can handle as b == 1 special case below:
std::swap(a, b);
std::swap(p, q);
invert = true;
}
//
// Depending upon which approximation method we use, we may end up
// calculating either x or y initially (where y = 1-x):
//
T x = 0; // Set to a safe zero to avoid a
// MSVC 2005 warning C4701: potentially uninitialized local variable 'x' used
// But code inspection appears to ensure that x IS assigned whatever the code path.
T y;
// For some of the methods we can put tighter bounds
// on the result than simply [0,1]:
//
T lower = 0;
T upper = 1;
//
// Student's T with b = 0.5 gets handled as a special case, swap
// around if the arguments are in the "wrong" order:
//
if(a == 0.5f)
{
if(b == 0.5f)
{
x = sin(p * constants::half_pi<T>());
x *= x;
if(py)
{
*py = sin(q * constants::half_pi<T>());
*py *= *py;
}
return x;
}
else if(b > 0.5f)
{
std::swap(a, b);
std::swap(p, q);
invert = !invert;
}
}
//
// Select calculation method for the initial estimate:
//
if((b == 0.5f) && (a >= 0.5f) && (p != 1))
{
//
// We have a Student's T distribution:
x = find_ibeta_inv_from_t_dist(a, p, q, &y, pol);
}
else if(b == 1)
{
if(p < q)
{
if(a > 1)
{
x = pow(p, 1 / a);
y = -boost::math::expm1(log(p) / a, pol);
}
else
{
x = pow(p, 1 / a);
y = 1 - x;
}
}
else
{
x = exp(boost::math::log1p(-q, pol) / a);
y = -boost::math::expm1(boost::math::log1p(-q, pol) / a, pol);
}
if(invert)
std::swap(x, y);
if(py)
*py = y;
return x;
}
else if(a + b > 5)
{
//
// When a+b is large then we can use one of Prof Temme's
// asymptotic expansions, begin by swapping things around
// so that p < 0.5, we do this to avoid cancellations errors
// when p is large.
//
if(p > 0.5)
{
std::swap(a, b);
std::swap(p, q);
invert = !invert;
}
T minv = (std::min)(a, b);
T maxv = (std::max)(a, b);
if((sqrt(minv) > (maxv - minv)) && (minv > 5))
{
//
// When a and b differ by a small amount
// the curve is quite symmetrical and we can use an error
// function to approximate the inverse. This is the cheapest
// of the three Temme expantions, and the calculated value
// for x will never be much larger than p, so we don't have
// to worry about cancellation as long as p is small.
//
x = temme_method_1_ibeta_inverse(a, b, p, pol);
y = 1 - x;
}
else
{
T r = a + b;
T theta = asin(sqrt(a / r));
T lambda = minv / r;
if((lambda >= 0.2) && (lambda <= 0.8) && (r >= 10))
{
//
// The second error function case is the next cheapest
// to use, it brakes down when the result is likely to be
// very small, if a+b is also small, but we can use a
// cheaper expansion there in any case. As before x won't
// be much larger than p, so as long as p is small we should
// be free of cancellation error.
//
T ppa = pow(p, 1/a);
if((ppa < 0.0025) && (a + b < 200))
{
x = ppa * pow(a * boost::math::beta(a, b, pol), 1/a);
}
else
x = temme_method_2_ibeta_inverse(a, b, p, r, theta, pol);
y = 1 - x;
}
else
{
//
// If we get here then a and b are very different in magnitude
// and we need to use the third of Temme's methods which
// involves inverting the incomplete gamma. This is much more
// expensive than the other methods. We also can only use this
// method when a > b, which can lead to cancellation errors
// if we really want y (as we will when x is close to 1), so
// a different expansion is used in that case.
//
if(a < b)
{
std::swap(a, b);
std::swap(p, q);
invert = !invert;
}
//
// Try and compute the easy way first:
//
T bet = 0;
if(b < 2)
bet = boost::math::beta(a, b, pol);
if(bet != 0)
{
y = pow(b * q * bet, 1/b);
x = 1 - y;
}
else
y = 1;
if(y > 1e-5)
{
x = temme_method_3_ibeta_inverse(a, b, p, q, pol);
y = 1 - x;
}
}
}
}
else if((a < 1) && (b < 1))
{
//
// Both a and b less than 1,
// there is a point of inflection at xs:
//
T xs = (1 - a) / (2 - a - b);
//
// Now we need to ensure that we start our iteration from the
// right side of the inflection point:
//
T fs = boost::math::ibeta(a, b, xs, pol) - p;
if(fabs(fs) / p < tools::epsilon<T>() * 3)
{
// The result is at the point of inflection, best just return it:
*py = invert ? xs : 1 - xs;
return invert ? 1-xs : xs;
}
if(fs < 0)
{
std::swap(a, b);
std::swap(p, q);
invert = !invert;
xs = 1 - xs;
}
T xg = pow(a * p * boost::math::beta(a, b, pol), 1/a);
x = xg / (1 + xg);
y = 1 / (1 + xg);
//
// And finally we know that our result is below the inflection
// point, so set an upper limit on our search:
//
if(x > xs)
x = xs;
upper = xs;
}
else if((a > 1) && (b > 1))
{
//
// Small a and b, both greater than 1,
// there is a point of inflection at xs,
// and it's complement is xs2, we must always
// start our iteration from the right side of the
// point of inflection.
//
T xs = (a - 1) / (a + b - 2);
T xs2 = (b - 1) / (a + b - 2);
T ps = boost::math::ibeta(a, b, xs, pol) - p;
if(ps < 0)
{
std::swap(a, b);
std::swap(p, q);
std::swap(xs, xs2);
invert = !invert;
}
//
// Estimate x and y, using expm1 to get a good estimate
// for y when it's very small:
//
T lx = log(p * a * boost::math::beta(a, b, pol)) / a;
x = exp(lx);
y = x < 0.9 ? T(1 - x) : (T)(-boost::math::expm1(lx, pol));
if((b < a) && (x < 0.2))
{
//
// Under a limited range of circumstances we can improve
// our estimate for x, frankly it's clear if this has much effect!
//
T ap1 = a - 1;
T bm1 = b - 1;
T a_2 = a * a;
T a_3 = a * a_2;
T b_2 = b * b;
T terms[5] = { 0, 1 };
terms[2] = bm1 / ap1;
ap1 *= ap1;
terms[3] = bm1 * (3 * a * b + 5 * b + a_2 - a - 4) / (2 * (a + 2) * ap1);
ap1 *= (a + 1);
terms[4] = bm1 * (33 * a * b_2 + 31 * b_2 + 8 * a_2 * b_2 - 30 * a * b - 47 * b + 11 * a_2 * b + 6 * a_3 * b + 18 + 4 * a - a_3 + a_2 * a_2 - 10 * a_2)
/ (3 * (a + 3) * (a + 2) * ap1);
x = tools::evaluate_polynomial(terms, x, 5);
}
//
// And finally we know that our result is below the inflection
// point, so set an upper limit on our search:
//
if(x > xs)
x = xs;
upper = xs;
}
else /*if((a <= 1) != (b <= 1))*/
{
//
// If all else fails we get here, only one of a and b
// is above 1, and a+b is small. Start by swapping
// things around so that we have a concave curve with b > a
// and no points of inflection in [0,1]. As long as we expect
// x to be small then we can use the simple (and cheap) power
// term to estimate x, but when we expect x to be large then
// this greatly underestimates x and leaves us trying to
// iterate "round the corner" which may take almost forever...
//
// We could use Temme's inverse gamma function case in that case,
// this works really rather well (albeit expensively) even though
// strictly speaking we're outside it's defined range.
//
// However it's expensive to compute, and an alternative approach
// which models the curve as a distorted quarter circle is much
// cheaper to compute, and still keeps the number of iterations
// required down to a reasonable level. With thanks to Prof Temme
// for this suggestion.
//
if(b < a)
{
std::swap(a, b);
std::swap(p, q);
invert = !invert;
}
if(pow(p, 1/a) < 0.5)
{
x = pow(p * a * boost::math::beta(a, b, pol), 1 / a);
if(x == 0)
x = boost::math::tools::min_value<T>();
y = 1 - x;
}
else /*if(pow(q, 1/b) < 0.1)*/
{
// model a distorted quarter circle:
y = pow(1 - pow(p, b * boost::math::beta(a, b, pol)), 1/b);
if(y == 0)
y = boost::math::tools::min_value<T>();
x = 1 - y;
}
}
//
// Now we have a guess for x (and for y) we can set things up for
// iteration. If x > 0.5 it pays to swap things round:
//
if(x > 0.5)
{
std::swap(a, b);
std::swap(p, q);
std::swap(x, y);
invert = !invert;
T l = 1 - upper;
T u = 1 - lower;
lower = l;
upper = u;
}
//
// lower bound for our search:
//
// We're not interested in denormalised answers as these tend to
// these tend to take up lots of iterations, given that we can't get
// accurate derivatives in this area (they tend to be infinite).
//
if(lower == 0)
{
if(invert && (py == 0))
{
//
// We're not interested in answers smaller than machine epsilon:
//
lower = boost::math::tools::epsilon<T>();
if(x < lower)
x = lower;
}
else
lower = boost::math::tools::min_value<T>();
if(x < lower)
x = lower;
}
//
// Figure out how many digits to iterate towards:
//
int digits = boost::math::policies::digits<T, Policy>() / 2;
if((x < 1e-50) && ((a < 1) || (b < 1)))
{
//
// If we're in a region where the first derivative is very
// large, then we have to take care that the root-finder
// doesn't terminate prematurely. We'll bump the precision
// up to avoid this, but we have to take care not to set the
// precision too high or the last few iterations will just
// thrash around and convergence may be slow in this case.
// Try 3/4 of machine epsilon:
//
digits *= 3;
digits /= 2;
}
//
// Now iterate, we can use either p or q as the target here
// depending on which is smaller:
//
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
x = boost::math::tools::halley_iterate(
boost::math::detail::ibeta_roots<T, Policy>(a, b, (p < q ? p : q), (p < q ? false : true)), x, lower, upper, digits, max_iter);
policies::check_root_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%)", max_iter, pol);
//
// We don't really want these asserts here, but they are useful for sanity
// checking that we have the limits right, uncomment if you suspect bugs *only*.
//
//BOOST_ASSERT(x != upper);
//BOOST_ASSERT((x != lower) || (x == boost::math::tools::min_value<T>()) || (x == boost::math::tools::epsilon<T>()));
//
// Tidy up, if we "lower" was too high then zero is the best answer we have:
//
if(x == lower)
x = 0;
if(py)
*py = invert ? x : 1 - x;
return invert ? 1-x : x;
}
} // namespace detail
template <class T1, class T2, class T3, class T4, class Policy>
inline typename tools::promote_args<T1, T2, T3, T4>::type
ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy& pol)
{
static const char* function = "boost::math::ibeta_inv<%1%>(%1%,%1%,%1%)";
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
if(a <= 0)
return policies::raise_domain_error<result_type>(function, "The argument a to the incomplete beta function inverse must be greater than zero (got a=%1%).", a, pol);
if(b <= 0)
return policies::raise_domain_error<result_type>(function, "The argument b to the incomplete beta function inverse must be greater than zero (got b=%1%).", b, pol);
if((p < 0) || (p > 1))
return policies::raise_domain_error<result_type>(function, "Argument p outside the range [0,1] in the incomplete beta function inverse (got p=%1%).", p, pol);
value_type rx, ry;
rx = detail::ibeta_inv_imp(
static_cast<value_type>(a),
static_cast<value_type>(b),
static_cast<value_type>(p),
static_cast<value_type>(1 - p),
forwarding_policy(), &ry);
if(py) *py = policies::checked_narrowing_cast<T4, forwarding_policy>(ry, function);
return policies::checked_narrowing_cast<result_type, forwarding_policy>(rx, function);
}
template <class T1, class T2, class T3, class T4>
inline typename tools::promote_args<T1, T2, T3, T4>::type
ibeta_inv(T1 a, T2 b, T3 p, T4* py)
{
return ibeta_inv(a, b, p, py, policies::policy<>());
}
template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type
ibeta_inv(T1 a, T2 b, T3 p)
{
typedef typename tools::promote_args<T1, T2, T3>::type result_type;
return ibeta_inv(a, b, p, static_cast<result_type*>(0), policies::policy<>());
}
template <class T1, class T2, class T3, class Policy>
inline typename tools::promote_args<T1, T2, T3>::type
ibeta_inv(T1 a, T2 b, T3 p, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2, T3>::type result_type;
return ibeta_inv(a, b, p, static_cast<result_type*>(0), pol);
}
template <class T1, class T2, class T3, class T4, class Policy>
inline typename tools::promote_args<T1, T2, T3, T4>::type
ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy& pol)
{
static const char* function = "boost::math::ibetac_inv<%1%>(%1%,%1%,%1%)";
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
if(a <= 0)
return policies::raise_domain_error<result_type>(function, "The argument a to the incomplete beta function inverse must be greater than zero (got a=%1%).", a, pol);
if(b <= 0)
return policies::raise_domain_error<result_type>(function, "The argument b to the incomplete beta function inverse must be greater than zero (got b=%1%).", b, pol);
if((q < 0) || (q > 1))
return policies::raise_domain_error<result_type>(function, "Argument q outside the range [0,1] in the incomplete beta function inverse (got q=%1%).", q, pol);
value_type rx, ry;
rx = detail::ibeta_inv_imp(
static_cast<value_type>(a),
static_cast<value_type>(b),
static_cast<value_type>(1 - q),
static_cast<value_type>(q),
forwarding_policy(), &ry);
if(py) *py = policies::checked_narrowing_cast<T4, forwarding_policy>(ry, function);
return policies::checked_narrowing_cast<result_type, forwarding_policy>(rx, function);
}
template <class T1, class T2, class T3, class T4>
inline typename tools::promote_args<T1, T2, T3, T4>::type
ibetac_inv(T1 a, T2 b, T3 q, T4* py)
{
return ibetac_inv(a, b, q, py, policies::policy<>());
}
template <class RT1, class RT2, class RT3>
inline typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_inv(RT1 a, RT2 b, RT3 q)
{
typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
return ibetac_inv(a, b, q, static_cast<result_type*>(0), policies::policy<>());
}
template <class RT1, class RT2, class RT3, class Policy>
inline typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_inv(RT1 a, RT2 b, RT3 q, const Policy& pol)
{
typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
return ibetac_inv(a, b, q, static_cast<result_type*>(0), pol);
}
} // namespace math
} // namespace boost
#endif // BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP
|