1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
// Copyright John Maddock 2007.
// Copyright Paul A. Bristow 2007
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SF_DETAIL_INV_T_HPP
#define BOOST_MATH_SF_DETAIL_INV_T_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/cbrt.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/math/special_functions/trunc.hpp>
namespace boost{ namespace math{ namespace detail{
//
// The main method used is due to Hill:
//
// G. W. Hill, Algorithm 396, Student's t-Quantiles,
// Communications of the ACM, 13(10): 619-620, Oct., 1970.
//
template <class T, class Policy>
T inverse_students_t_hill(T ndf, T u, const Policy& pol)
{
BOOST_MATH_STD_USING
BOOST_ASSERT(u <= 0.5);
T a, b, c, d, q, x, y;
if (ndf > 1e20f)
return -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
a = 1 / (ndf - 0.5f);
b = 48 / (a * a);
c = ((20700 * a / b - 98) * a - 16) * a + 96.36f;
d = ((94.5f / (b + c) - 3) / b + 1) * sqrt(a * constants::pi<T>() / 2) * ndf;
y = pow(d * 2 * u, 2 / ndf);
if (y > (0.05f + a))
{
//
// Asymptotic inverse expansion about normal:
//
x = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
y = x * x;
if (ndf < 5)
c += 0.3f * (ndf - 4.5f) * (x + 0.6f);
c += (((0.05f * d * x - 5) * x - 7) * x - 2) * x + b;
y = (((((0.4f * y + 6.3f) * y + 36) * y + 94.5f) / c - y - 3) / b + 1) * x;
y = boost::math::expm1(a * y * y, pol);
}
else
{
y = static_cast<T>(((1 / (((ndf + 6) / (ndf * y) - 0.089f * d - 0.822f)
* (ndf + 2) * 3) + 0.5 / (ndf + 4)) * y - 1)
* (ndf + 1) / (ndf + 2) + 1 / y);
}
q = sqrt(ndf * y);
return -q;
}
//
// Tail and body series are due to Shaw:
//
// www.mth.kcl.ac.uk/~shaww/web_page/papers/Tdistribution06.pdf
//
// Shaw, W.T., 2006, "Sampling Student's T distribution - use of
// the inverse cumulative distribution function."
// Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006
//
template <class T, class Policy>
T inverse_students_t_tail_series(T df, T v, const Policy& pol)
{
BOOST_MATH_STD_USING
// Tail series expansion, see section 6 of Shaw's paper.
// w is calculated using Eq 60:
T w = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol)
* sqrt(df * constants::pi<T>()) * v;
// define some variables:
T np2 = df + 2;
T np4 = df + 4;
T np6 = df + 6;
//
// Calculate the coefficients d(k), these depend only on the
// number of degrees of freedom df, so at least in theory
// we could tabulate these for fixed df, see p15 of Shaw:
//
T d[7] = { 1, };
d[1] = -(df + 1) / (2 * np2);
np2 *= (df + 2);
d[2] = -df * (df + 1) * (df + 3) / (8 * np2 * np4);
np2 *= df + 2;
d[3] = -df * (df + 1) * (df + 5) * (((3 * df) + 7) * df -2) / (48 * np2 * np4 * np6);
np2 *= (df + 2);
np4 *= (df + 4);
d[4] = -df * (df + 1) * (df + 7) *
( (((((15 * df) + 154) * df + 465) * df + 286) * df - 336) * df + 64 )
/ (384 * np2 * np4 * np6 * (df + 8));
np2 *= (df + 2);
d[5] = -df * (df + 1) * (df + 3) * (df + 9)
* (((((((35 * df + 452) * df + 1573) * df + 600) * df - 2020) * df) + 928) * df -128)
/ (1280 * np2 * np4 * np6 * (df + 8) * (df + 10));
np2 *= (df + 2);
np4 *= (df + 4);
np6 *= (df + 6);
d[6] = -df * (df + 1) * (df + 11)
* ((((((((((((945 * df) + 31506) * df + 425858) * df + 2980236) * df + 11266745) * df + 20675018) * df + 7747124) * df - 22574632) * df - 8565600) * df + 18108416) * df - 7099392) * df + 884736)
/ (46080 * np2 * np4 * np6 * (df + 8) * (df + 10) * (df +12));
//
// Now bring everthing together to provide the result,
// this is Eq 62 of Shaw:
//
T rn = sqrt(df);
T div = pow(rn * w, 1 / df);
T power = div * div;
T result = tools::evaluate_polynomial<7, T, T>(d, power);
result *= rn;
result /= div;
return -result;
}
template <class T, class Policy>
T inverse_students_t_body_series(T df, T u, const Policy& pol)
{
BOOST_MATH_STD_USING
//
// Body series for small N:
//
// Start with Eq 56 of Shaw:
//
T v = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol)
* sqrt(df * constants::pi<T>()) * (u - constants::half<T>());
//
// Workspace for the polynomial coefficients:
//
T c[11] = { 0, 1, };
//
// Figure out what the coefficients are, note these depend
// only on the degrees of freedom (Eq 57 of Shaw):
//
T in = 1 / df;
c[2] = static_cast<T>(0.16666666666666666667 + 0.16666666666666666667 * in);
c[3] = static_cast<T>((0.0083333333333333333333 * in
+ 0.066666666666666666667) * in
+ 0.058333333333333333333);
c[4] = static_cast<T>(((0.00019841269841269841270 * in
+ 0.0017857142857142857143) * in
+ 0.026785714285714285714) * in
+ 0.025198412698412698413);
c[5] = static_cast<T>((((2.7557319223985890653e-6 * in
+ 0.00037477954144620811287) * in
- 0.0011078042328042328042) * in
+ 0.010559964726631393298) * in
+ 0.012039792768959435626);
c[6] = static_cast<T>(((((2.5052108385441718775e-8 * in
- 0.000062705427288760622094) * in
+ 0.00059458674042007375341) * in
- 0.0016095979637646304313) * in
+ 0.0061039211560044893378) * in
+ 0.0038370059724226390893);
c[7] = static_cast<T>((((((1.6059043836821614599e-10 * in
+ 0.000015401265401265401265) * in
- 0.00016376804137220803887) * in
+ 0.00069084207973096861986) * in
- 0.0012579159844784844785) * in
+ 0.0010898206731540064873) * in
+ 0.0032177478835464946576);
c[8] = static_cast<T>(((((((7.6471637318198164759e-13 * in
- 3.9851014346715404916e-6) * in
+ 0.000049255746366361445727) * in
- 0.00024947258047043099953) * in
+ 0.00064513046951456342991) * in
- 0.00076245135440323932387) * in
+ 0.000033530976880017885309) * in
+ 0.0017438262298340009980);
c[9] = static_cast<T>((((((((2.8114572543455207632e-15 * in
+ 1.0914179173496789432e-6) * in
- 0.000015303004486655377567) * in
+ 0.000090867107935219902229) * in
- 0.00029133414466938067350) * in
+ 0.00051406605788341121363) * in
- 0.00036307660358786885787) * in
- 0.00031101086326318780412) * in
+ 0.00096472747321388644237);
c[10] = static_cast<T>(((((((((8.2206352466243297170e-18 * in
- 3.1239569599829868045e-7) * in
+ 4.8903045291975346210e-6) * in
- 0.000033202652391372058698) * in
+ 0.00012645437628698076975) * in
- 0.00028690924218514613987) * in
+ 0.00035764655430568632777) * in
- 0.00010230378073700412687) * in
- 0.00036942667800009661203) * in
+ 0.00054229262813129686486);
//
// The result is then a polynomial in v (see Eq 56 of Shaw):
//
return tools::evaluate_odd_polynomial<11, T, T>(c, v);
}
template <class T, class Policy>
T inverse_students_t(T df, T u, T v, const Policy& pol, bool* pexact = 0)
{
//
// df = number of degrees of freedom.
// u = probablity.
// v = 1 - u.
// l = lanczos type to use.
//
BOOST_MATH_STD_USING
bool invert = false;
T result = 0;
if(pexact)
*pexact = false;
if(u > v)
{
// function is symmetric, invert it:
std::swap(u, v);
invert = true;
}
if((floor(df) == df) && (df < 20))
{
//
// we have integer degrees of freedom, try for the special
// cases first:
//
T tolerance = ldexp(1.0f, (2 * policies::digits<T, Policy>()) / 3);
switch(itrunc(df, Policy()))
{
case 1:
{
//
// df = 1 is the same as the Cauchy distribution, see
// Shaw Eq 35:
//
if(u == 0.5)
result = 0;
else
result = -cos(constants::pi<T>() * u) / sin(constants::pi<T>() * u);
if(pexact)
*pexact = true;
break;
}
case 2:
{
//
// df = 2 has an exact result, see Shaw Eq 36:
//
result =(2 * u - 1) / sqrt(2 * u * v);
if(pexact)
*pexact = true;
break;
}
case 4:
{
//
// df = 4 has an exact result, see Shaw Eq 38 & 39:
//
T alpha = 4 * u * v;
T root_alpha = sqrt(alpha);
T r = 4 * cos(acos(root_alpha) / 3) / root_alpha;
T x = sqrt(r - 4);
result = u - 0.5f < 0 ? (T)-x : x;
if(pexact)
*pexact = true;
break;
}
case 6:
{
//
// We get numeric overflow in this area:
//
if(u < 1e-150)
return (invert ? -1 : 1) * inverse_students_t_hill(df, u, pol);
//
// Newton-Raphson iteration of a polynomial case,
// choice of seed value is taken from Shaw's online
// supplement:
//
T a = 4 * (u - u * u);//1 - 4 * (u - 0.5f) * (u - 0.5f);
T b = boost::math::cbrt(a);
static const T c = static_cast<T>(0.85498797333834849467655443627193);
T p = 6 * (1 + c * (1 / b - 1));
T p0;
do{
T p2 = p * p;
T p4 = p2 * p2;
T p5 = p * p4;
p0 = p;
// next term is given by Eq 41:
p = 2 * (8 * a * p5 - 270 * p2 + 2187) / (5 * (4 * a * p4 - 216 * p - 243));
}while(fabs((p - p0) / p) > tolerance);
//
// Use Eq 45 to extract the result:
//
p = sqrt(p - df);
result = (u - 0.5f) < 0 ? (T)-p : p;
break;
}
#if 0
//
// These are Shaw's "exact" but iterative solutions
// for even df, the numerical accuracy of these is
// rather less than Hill's method, so these are disabled
// for now, which is a shame because they are reasonably
// quick to evaluate...
//
case 8:
{
//
// Newton-Raphson iteration of a polynomial case,
// choice of seed value is taken from Shaw's online
// supplement:
//
static const T c8 = 0.85994765706259820318168359251872L;
T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f);
T b = pow(a, T(1) / 4);
T p = 8 * (1 + c8 * (1 / b - 1));
T p0 = p;
do{
T p5 = p * p;
p5 *= p5 * p;
p0 = p;
// Next term is given by Eq 42:
p = 2 * (3 * p + (640 * (160 + p * (24 + p * (p + 4)))) / (-5120 + p * (-2048 - 960 * p + a * p5))) / 7;
}while(fabs((p - p0) / p) > tolerance);
//
// Use Eq 45 to extract the result:
//
p = sqrt(p - df);
result = (u - 0.5f) < 0 ? -p : p;
break;
}
case 10:
{
//
// Newton-Raphson iteration of a polynomial case,
// choice of seed value is taken from Shaw's online
// supplement:
//
static const T c10 = 0.86781292867813396759105692122285L;
T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f);
T b = pow(a, T(1) / 5);
T p = 10 * (1 + c10 * (1 / b - 1));
T p0;
do{
T p6 = p * p;
p6 *= p6 * p6;
p0 = p;
// Next term given by Eq 43:
p = (8 * p) / 9 + (218750 * (21875 + 4 * p * (625 + p * (75 + 2 * p * (5 + p))))) /
(9 * (-68359375 + 8 * p * (-2343750 + p * (-546875 - 175000 * p + 8 * a * p6))));
}while(fabs((p - p0) / p) > tolerance);
//
// Use Eq 45 to extract the result:
//
p = sqrt(p - df);
result = (u - 0.5f) < 0 ? -p : p;
break;
}
#endif
default:
goto calculate_real;
}
}
else
{
calculate_real:
if(df > 0x10000000)
{
result = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
if((pexact) && (df >= 1e20))
*pexact = true;
}
else if(df < 3)
{
//
// Use a roughly linear scheme to choose between Shaw's
// tail series and body series:
//
T crossover = 0.2742f - df * 0.0242143f;
if(u > crossover)
{
result = boost::math::detail::inverse_students_t_body_series(df, u, pol);
}
else
{
result = boost::math::detail::inverse_students_t_tail_series(df, u, pol);
}
}
else
{
//
// Use Hill's method except in the exteme tails
// where we use Shaw's tail series.
// The crossover point is roughly exponential in -df:
//
T crossover = ldexp(1.0f, iround(T(df / -0.654f), typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type()));
if(u > crossover)
{
result = boost::math::detail::inverse_students_t_hill(df, u, pol);
}
else
{
result = boost::math::detail::inverse_students_t_tail_series(df, u, pol);
}
}
}
return invert ? (T)-result : result;
}
template <class T, class Policy>
inline T find_ibeta_inv_from_t_dist(T a, T p, T /*q*/, T* py, const Policy& pol)
{
T u = p / 2;
T v = 1 - u;
T df = a * 2;
T t = boost::math::detail::inverse_students_t(df, u, v, pol);
*py = t * t / (df + t * t);
return df / (df + t * t);
}
template <class T, class Policy>
inline T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::false_*)
{
BOOST_MATH_STD_USING
//
// Need to use inverse incomplete beta to get
// required precision so not so fast:
//
T probability = (p > 0.5) ? 1 - p : p;
T t, x, y(0);
x = ibeta_inv(df / 2, T(0.5), 2 * probability, &y, pol);
if(df * y > tools::max_value<T>() * x)
t = policies::raise_overflow_error<T>("boost::math::students_t_quantile<%1%>(%1%,%1%)", 0, pol);
else
t = sqrt(df * y / x);
//
// Figure out sign based on the size of p:
//
if(p < 0.5)
t = -t;
return t;
}
template <class T, class Policy>
T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const mpl::true_*)
{
BOOST_MATH_STD_USING
bool invert = false;
if((df < 2) && (floor(df) != df))
return boost::math::detail::fast_students_t_quantile_imp(df, p, pol, static_cast<mpl::false_*>(0));
if(p > 0.5)
{
p = 1 - p;
invert = true;
}
//
// Get an estimate of the result:
//
bool exact;
T t = inverse_students_t(df, p, T(1-p), pol, &exact);
if((t == 0) || exact)
return invert ? -t : t; // can't do better!
//
// Change variables to inverse incomplete beta:
//
T t2 = t * t;
T xb = df / (df + t2);
T y = t2 / (df + t2);
T a = df / 2;
//
// t can be so large that x underflows,
// just return our estimate in that case:
//
if(xb == 0)
return t;
//
// Get incomplete beta and it's derivative:
//
T f1;
T f0 = xb < y ? ibeta_imp(a, constants::half<T>(), xb, pol, false, true, &f1)
: ibeta_imp(constants::half<T>(), a, y, pol, true, true, &f1);
// Get cdf from incomplete beta result:
T p0 = f0 / 2 - p;
// Get pdf from derivative:
T p1 = f1 * sqrt(y * xb * xb * xb / df);
//
// Second derivative divided by p1:
//
// yacas gives:
//
// In> PrettyForm(Simplify(D(t) (1 + t^2/v) ^ (-(v+1)/2)))
//
// | | v + 1 | |
// | -| ----- + 1 | |
// | | 2 | |
// -| | 2 | |
// | | t | |
// | | -- + 1 | |
// | ( v + 1 ) * | v | * t |
// ---------------------------------------------
// v
//
// Which after some manipulation is:
//
// -p1 * t * (df + 1) / (t^2 + df)
//
T p2 = t * (df + 1) / (t * t + df);
// Halley step:
t = fabs(t);
t += p0 / (p1 + p0 * p2 / 2);
return !invert ? -t : t;
}
template <class T, class Policy>
inline T fast_students_t_quantile(T df, T p, const Policy& pol)
{
typedef typename policies::evaluation<T, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
typedef mpl::bool_<
(std::numeric_limits<T>::digits <= 53)
&&
(std::numeric_limits<T>::is_specialized)
&&
(std::numeric_limits<T>::radix == 2)
> tag_type;
return policies::checked_narrowing_cast<T, forwarding_policy>(fast_students_t_quantile_imp(static_cast<value_type>(df), static_cast<value_type>(p), pol, static_cast<tag_type*>(0)), "boost::math::students_t_quantile<%1%>(%1%,%1%,%1%)");
}
}}} // namespaces
#endif // BOOST_MATH_SF_DETAIL_INV_T_HPP
|