1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_EXPM1_INCLUDED
#define BOOST_MATH_EXPM1_INCLUDED
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/config/no_tr1/cmath.hpp>
#include <math.h> // platform's ::expm1
#include <boost/limits.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/tools/series.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/big_constant.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/rational.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/mpl/less_equal.hpp>
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
# include <boost/static_assert.hpp>
#else
# include <boost/assert.hpp>
#endif
namespace boost{ namespace math{
namespace detail
{
// Functor expm1_series returns the next term in the Taylor series
// x^k / k!
// each time that operator() is invoked.
//
template <class T>
struct expm1_series
{
typedef T result_type;
expm1_series(T x)
: k(0), m_x(x), m_term(1) {}
T operator()()
{
++k;
m_term *= m_x;
m_term /= k;
return m_term;
}
int count()const
{
return k;
}
private:
int k;
const T m_x;
T m_term;
expm1_series(const expm1_series&);
expm1_series& operator=(const expm1_series&);
};
template <class T, class Policy, class tag>
struct expm1_initializer
{
struct init
{
init()
{
do_init(tag());
}
template <int N>
static void do_init(const mpl::int_<N>&){}
static void do_init(const mpl::int_<64>&)
{
expm1(T(0.5));
}
static void do_init(const mpl::int_<113>&)
{
expm1(T(0.5));
}
void force_instantiate()const{}
};
static const init initializer;
static void force_instantiate()
{
initializer.force_instantiate();
}
};
template <class T, class Policy, class tag>
const typename expm1_initializer<T, Policy, tag>::init expm1_initializer<T, Policy, tag>::initializer;
//
// Algorithm expm1 is part of C99, but is not yet provided by many compilers.
//
// This version uses a Taylor series expansion for 0.5 > |x| > epsilon.
//
template <class T, class Policy>
T expm1_imp(T x, const mpl::int_<0>&, const Policy& pol)
{
BOOST_MATH_STD_USING
T a = fabs(x);
if(a > T(0.5f))
{
if(a >= tools::log_max_value<T>())
{
if(x > 0)
return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
return -1;
}
return exp(x) - T(1);
}
if(a < tools::epsilon<T>())
return x;
detail::expm1_series<T> s(x);
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245)
T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
#else
T zero = 0;
T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero);
#endif
policies::check_series_iterations<T>("boost::math::expm1<%1%>(%1%)", max_iter, pol);
return result;
}
template <class T, class P>
T expm1_imp(T x, const mpl::int_<53>&, const P& pol)
{
BOOST_MATH_STD_USING
T a = fabs(x);
if(a > T(0.5L))
{
if(a >= tools::log_max_value<T>())
{
if(x > 0)
return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
return -1;
}
return exp(x) - T(1);
}
if(a < tools::epsilon<T>())
return x;
static const float Y = 0.10281276702880859e1f;
static const T n[] = { static_cast<T>(-0.28127670288085937e-1), static_cast<T>(0.51278186299064534e0), static_cast<T>(-0.6310029069350198e-1), static_cast<T>(0.11638457975729296e-1), static_cast<T>(-0.52143390687521003e-3), static_cast<T>(0.21491399776965688e-4) };
static const T d[] = { 1, static_cast<T>(-0.45442309511354755e0), static_cast<T>(0.90850389570911714e-1), static_cast<T>(-0.10088963629815502e-1), static_cast<T>(0.63003407478692265e-3), static_cast<T>(-0.17976570003654402e-4) };
T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
return result;
}
template <class T, class P>
T expm1_imp(T x, const mpl::int_<64>&, const P& pol)
{
BOOST_MATH_STD_USING
T a = fabs(x);
if(a > T(0.5L))
{
if(a >= tools::log_max_value<T>())
{
if(x > 0)
return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
return -1;
}
return exp(x) - T(1);
}
if(a < tools::epsilon<T>())
return x;
static const float Y = 0.10281276702880859375e1f;
static const T n[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.281276702880859375e-1),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.512980290285154286358e0),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.667758794592881019644e-1),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.131432469658444745835e-1),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.72303795326880286965e-3),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.447441185192951335042e-4),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.714539134024984593011e-6)
};
static const T d[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.461477618025562520389e0),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.961237488025708540713e-1),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.116483957658204450739e-1),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.873308008461557544458e-3),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.387922804997682392562e-4),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.807473180049193557294e-6)
};
T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
return result;
}
template <class T, class P>
T expm1_imp(T x, const mpl::int_<113>&, const P& pol)
{
BOOST_MATH_STD_USING
T a = fabs(x);
if(a > T(0.5L))
{
if(a >= tools::log_max_value<T>())
{
if(x > 0)
return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
return -1;
}
return exp(x) - T(1);
}
if(a < tools::epsilon<T>())
return x;
static const float Y = 0.10281276702880859375e1f;
static const T n[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, -0.28127670288085937499999999999999999854e-1),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.51278156911210477556524452177540792214e0),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.63263178520747096729500254678819588223e-1),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.14703285606874250425508446801230572252e-1),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.8675686051689527802425310407898459386e-3),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.88126359618291165384647080266133492399e-4),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.25963087867706310844432390015463138953e-5),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.14226691087800461778631773363204081194e-6),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.15995603306536496772374181066765665596e-8),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.45261820069007790520447958280473183582e-10)
};
static const T d[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.45441264709074310514348137469214538853e0),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.96827131936192217313133611655555298106e-1),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.12745248725908178612540554584374876219e-1),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.11473613871583259821612766907781095472e-2),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.73704168477258911962046591907690764416e-4),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.34087499397791555759285503797256103259e-5),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.11114024704296196166272091230695179724e-6),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.23987051614110848595909588343223896577e-8),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.29477341859111589208776402638429026517e-10),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.13222065991022301420255904060628100924e-12)
};
T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
return result;
}
} // namespace detail
template <class T, class Policy>
inline typename tools::promote_args<T>::type expm1(T x, const Policy& /* pol */)
{
typedef typename tools::promote_args<T>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::precision<result_type, Policy>::type precision_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
typedef typename mpl::if_c<
::std::numeric_limits<result_type>::is_specialized == 0,
mpl::int_<0>, // no numeric_limits, use generic solution
typename mpl::if_<
typename mpl::less_equal<precision_type, mpl::int_<53> >::type,
mpl::int_<53>, // double
typename mpl::if_<
typename mpl::less_equal<precision_type, mpl::int_<64> >::type,
mpl::int_<64>, // 80-bit long double
typename mpl::if_<
typename mpl::less_equal<precision_type, mpl::int_<113> >::type,
mpl::int_<113>, // 128-bit long double
mpl::int_<0> // too many bits, use generic version.
>::type
>::type
>::type
>::type tag_type;
detail::expm1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expm1_imp(
static_cast<value_type>(x),
tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)");
}
#ifdef expm1
# ifndef BOOST_HAS_expm1
# define BOOST_HAS_expm1
# endif
# undef expm1
#endif
#if defined(BOOST_HAS_EXPM1) && !(defined(__osf__) && defined(__DECCXX_VER))
# ifdef BOOST_MATH_USE_C99
inline float expm1(float x, const policies::policy<>&){ return ::expm1f(x); }
# ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
inline long double expm1(long double x, const policies::policy<>&){ return ::expm1l(x); }
# endif
# else
inline float expm1(float x, const policies::policy<>&){ return static_cast<float>(::expm1(x)); }
# endif
inline double expm1(double x, const policies::policy<>&){ return ::expm1(x); }
#endif
template <class T>
inline typename tools::promote_args<T>::type expm1(T x)
{
return expm1(x, policies::policy<>());
}
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
inline float expm1(float z)
{
return expm1<float>(z);
}
inline double expm1(double z)
{
return expm1<double>(z);
}
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
inline long double expm1(long double z)
{
return expm1<long double>(z);
}
#endif
#endif
} // namespace math
} // namespace boost
#endif // BOOST_MATH_HYPOT_INCLUDED
|