1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
// Copyright John Maddock 2006, 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SP_FACTORIALS_HPP
#define BOOST_MATH_SP_FACTORIALS_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/detail/unchecked_factorial.hpp>
#include <boost/array.hpp>
#ifdef BOOST_MSVC
#pragma warning(push) // Temporary until lexical cast fixed.
#pragma warning(disable: 4127 4701)
#endif
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#include <boost/config/no_tr1/cmath.hpp>
namespace boost { namespace math
{
template <class T, class Policy>
inline T factorial(unsigned i, const Policy& pol)
{
BOOST_STATIC_ASSERT(!boost::is_integral<T>::value);
// factorial<unsigned int>(n) is not implemented
// because it would overflow integral type T for too small n
// to be useful. Use instead a floating-point type,
// and convert to an unsigned type if essential, for example:
// unsigned int nfac = static_cast<unsigned int>(factorial<double>(n));
// See factorial documentation for more detail.
BOOST_MATH_STD_USING // Aid ADL for floor.
if(i <= max_factorial<T>::value)
return unchecked_factorial<T>(i);
T result = boost::math::tgamma(static_cast<T>(i+1), pol);
if(result > tools::max_value<T>())
return result; // Overflowed value! (But tgamma will have signalled the error already).
return floor(result + 0.5f);
}
template <class T>
inline T factorial(unsigned i)
{
return factorial<T>(i, policies::policy<>());
}
/*
// Can't have these in a policy enabled world?
template<>
inline float factorial<float>(unsigned i)
{
if(i <= max_factorial<float>::value)
return unchecked_factorial<float>(i);
return tools::overflow_error<float>(BOOST_CURRENT_FUNCTION);
}
template<>
inline double factorial<double>(unsigned i)
{
if(i <= max_factorial<double>::value)
return unchecked_factorial<double>(i);
return tools::overflow_error<double>(BOOST_CURRENT_FUNCTION);
}
*/
template <class T, class Policy>
T double_factorial(unsigned i, const Policy& pol)
{
BOOST_STATIC_ASSERT(!boost::is_integral<T>::value);
BOOST_MATH_STD_USING // ADL lookup of std names
if(i & 1)
{
// odd i:
if(i < max_factorial<T>::value)
{
unsigned n = (i - 1) / 2;
return ceil(unchecked_factorial<T>(i) / (ldexp(T(1), (int)n) * unchecked_factorial<T>(n)) - 0.5f);
}
//
// Fallthrough: i is too large to use table lookup, try the
// gamma function instead.
//
T result = boost::math::tgamma(static_cast<T>(i) / 2 + 1, pol) / sqrt(constants::pi<T>());
if(ldexp(tools::max_value<T>(), -static_cast<int>(i+1) / 2) > result)
return ceil(result * ldexp(T(1), static_cast<int>(i+1) / 2) - 0.5f);
}
else
{
// even i:
unsigned n = i / 2;
T result = factorial<T>(n, pol);
if(ldexp(tools::max_value<T>(), -(int)n) > result)
return result * ldexp(T(1), (int)n);
}
//
// If we fall through to here then the result is infinite:
//
return policies::raise_overflow_error<T>("boost::math::double_factorial<%1%>(unsigned)", 0, pol);
}
template <class T>
inline T double_factorial(unsigned i)
{
return double_factorial<T>(i, policies::policy<>());
}
namespace detail{
template <class T, class Policy>
T rising_factorial_imp(T x, int n, const Policy& pol)
{
BOOST_STATIC_ASSERT(!boost::is_integral<T>::value);
if(x < 0)
{
//
// For x less than zero, we really have a falling
// factorial, modulo a possible change of sign.
//
// Note that the falling factorial isn't defined
// for negative n, so we'll get rid of that case
// first:
//
bool inv = false;
if(n < 0)
{
x += n;
n = -n;
inv = true;
}
T result = ((n&1) ? -1 : 1) * falling_factorial(-x, n, pol);
if(inv)
result = 1 / result;
return result;
}
if(n == 0)
return 1;
if(x == 0)
{
if(n < 0)
return -boost::math::tgamma_delta_ratio(x + 1, static_cast<T>(-n), pol);
else
return 0;
}
if((x < 1) && (x + n < 0))
{
T val = boost::math::tgamma_delta_ratio(1 - x, static_cast<T>(-n), pol);
return (n & 1) ? T(-val) : val;
}
//
// We don't optimise this for small n, because
// tgamma_delta_ratio is alreay optimised for that
// use case:
//
return 1 / boost::math::tgamma_delta_ratio(x, static_cast<T>(n), pol);
}
template <class T, class Policy>
inline T falling_factorial_imp(T x, unsigned n, const Policy& pol)
{
BOOST_STATIC_ASSERT(!boost::is_integral<T>::value);
BOOST_MATH_STD_USING // ADL of std names
if((x == 0) && (n >= 0))
return 0;
if(x < 0)
{
//
// For x < 0 we really have a rising factorial
// modulo a possible change of sign:
//
return (n&1 ? -1 : 1) * rising_factorial(-x, n, pol);
}
if(n == 0)
return 1;
if(x < 0.5f)
{
//
// 1 + x below will throw away digits, so split up calculation:
//
if(n > max_factorial<T>::value - 2)
{
// If the two end of the range are far apart we have a ratio of two very large
// numbers, split the calculation up into two blocks:
T t1 = x * boost::math::falling_factorial(x - 1, max_factorial<T>::value - 2);
T t2 = boost::math::falling_factorial(x - max_factorial<T>::value + 1, n - max_factorial<T>::value + 1);
if(tools::max_value<T>() / fabs(t1) < fabs(t2))
return boost::math::sign(t1) * boost::math::sign(t2) * policies::raise_overflow_error<T>("boost::math::falling_factorial<%1%>", 0, pol);
return t1 * t2;
}
return x * boost::math::falling_factorial(x - 1, n - 1);
}
if(x <= n - 1)
{
//
// x+1-n will be negative and tgamma_delta_ratio won't
// handle it, split the product up into three parts:
//
T xp1 = x + 1;
unsigned n2 = itrunc((T)floor(xp1), pol);
if(n2 == xp1)
return 0;
T result = boost::math::tgamma_delta_ratio(xp1, -static_cast<T>(n2), pol);
x -= n2;
result *= x;
++n2;
if(n2 < n)
result *= falling_factorial(x - 1, n - n2, pol);
return result;
}
//
// Simple case: just the ratio of two
// (positive argument) gamma functions.
// Note that we don't optimise this for small n,
// because tgamma_delta_ratio is alreay optimised
// for that use case:
//
return boost::math::tgamma_delta_ratio(x + 1, -static_cast<T>(n), pol);
}
} // namespace detail
template <class RT>
inline typename tools::promote_args<RT>::type
falling_factorial(RT x, unsigned n)
{
typedef typename tools::promote_args<RT>::type result_type;
return detail::falling_factorial_imp(
static_cast<result_type>(x), n, policies::policy<>());
}
template <class RT, class Policy>
inline typename tools::promote_args<RT>::type
falling_factorial(RT x, unsigned n, const Policy& pol)
{
typedef typename tools::promote_args<RT>::type result_type;
return detail::falling_factorial_imp(
static_cast<result_type>(x), n, pol);
}
template <class RT>
inline typename tools::promote_args<RT>::type
rising_factorial(RT x, int n)
{
typedef typename tools::promote_args<RT>::type result_type;
return detail::rising_factorial_imp(
static_cast<result_type>(x), n, policies::policy<>());
}
template <class RT, class Policy>
inline typename tools::promote_args<RT>::type
rising_factorial(RT x, int n, const Policy& pol)
{
typedef typename tools::promote_args<RT>::type result_type;
return detail::rising_factorial_imp(
static_cast<result_type>(x), n, pol);
}
} // namespace math
} // namespace boost
#endif // BOOST_MATH_SP_FACTORIALS_HPP
|