1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
#define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/precision.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/cstdint.hpp>
#include <limits>
#ifdef BOOST_MATH_LOG_ROOT_ITERATIONS
# define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp>
# include BOOST_MATH_LOGGER_INCLUDE
# undef BOOST_MATH_LOGGER_INCLUDE
#else
# define BOOST_MATH_LOG_COUNT(count)
#endif
namespace boost{ namespace math{ namespace tools{
template <class T>
class eps_tolerance
{
public:
eps_tolerance()
{
eps = 4 * tools::epsilon<T>();
}
eps_tolerance(unsigned bits)
{
BOOST_MATH_STD_USING
eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
}
bool operator()(const T& a, const T& b)
{
BOOST_MATH_STD_USING
return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
}
private:
T eps;
};
struct equal_floor
{
equal_floor(){}
template <class T>
bool operator()(const T& a, const T& b)
{
BOOST_MATH_STD_USING
return floor(a) == floor(b);
}
};
struct equal_ceil
{
equal_ceil(){}
template <class T>
bool operator()(const T& a, const T& b)
{
BOOST_MATH_STD_USING
return ceil(a) == ceil(b);
}
};
struct equal_nearest_integer
{
equal_nearest_integer(){}
template <class T>
bool operator()(const T& a, const T& b)
{
BOOST_MATH_STD_USING
return floor(a + 0.5f) == floor(b + 0.5f);
}
};
namespace detail{
template <class F, class T>
void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
{
//
// Given a point c inside the existing enclosing interval
// [a, b] sets a = c if f(c) == 0, otherwise finds the new
// enclosing interval: either [a, c] or [c, b] and sets
// d and fd to the point that has just been removed from
// the interval. In other words d is the third best guess
// to the root.
//
BOOST_MATH_STD_USING // For ADL of std math functions
T tol = tools::epsilon<T>() * 2;
//
// If the interval [a,b] is very small, or if c is too close
// to one end of the interval then we need to adjust the
// location of c accordingly:
//
if((b - a) < 2 * tol * a)
{
c = a + (b - a) / 2;
}
else if(c <= a + fabs(a) * tol)
{
c = a + fabs(a) * tol;
}
else if(c >= b - fabs(b) * tol)
{
c = b - fabs(b) * tol;
}
//
// OK, lets invoke f(c):
//
T fc = f(c);
//
// if we have a zero then we have an exact solution to the root:
//
if(fc == 0)
{
a = c;
fa = 0;
d = 0;
fd = 0;
return;
}
//
// Non-zero fc, update the interval:
//
if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
{
d = b;
fd = fb;
b = c;
fb = fc;
}
else
{
d = a;
fd = fa;
a = c;
fa= fc;
}
}
template <class T>
inline T safe_div(T num, T denom, T r)
{
//
// return num / denom without overflow,
// return r if overflow would occur.
//
BOOST_MATH_STD_USING // For ADL of std math functions
if(fabs(denom) < 1)
{
if(fabs(denom * tools::max_value<T>()) <= fabs(num))
return r;
}
return num / denom;
}
template <class T>
inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
{
//
// Performs standard secant interpolation of [a,b] given
// function evaluations f(a) and f(b). Performs a bisection
// if secant interpolation would leave us very close to either
// a or b. Rationale: we only call this function when at least
// one other form of interpolation has already failed, so we know
// that the function is unlikely to be smooth with a root very
// close to a or b.
//
BOOST_MATH_STD_USING // For ADL of std math functions
T tol = tools::epsilon<T>() * 5;
T c = a - (fa / (fb - fa)) * (b - a);
if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
return (a + b) / 2;
return c;
}
template <class T>
T quadratic_interpolate(const T& a, const T& b, T const& d,
const T& fa, const T& fb, T const& fd,
unsigned count)
{
//
// Performs quadratic interpolation to determine the next point,
// takes count Newton steps to find the location of the
// quadratic polynomial.
//
// Point d must lie outside of the interval [a,b], it is the third
// best approximation to the root, after a and b.
//
// Note: this does not guarantee to find a root
// inside [a, b], so we fall back to a secant step should
// the result be out of range.
//
// Start by obtaining the coefficients of the quadratic polynomial:
//
T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
A = safe_div(T(A - B), T(d - a), T(0));
if(A == 0)
{
// failure to determine coefficients, try a secant step:
return secant_interpolate(a, b, fa, fb);
}
//
// Determine the starting point of the Newton steps:
//
T c;
if(boost::math::sign(A) * boost::math::sign(fa) > 0)
{
c = a;
}
else
{
c = b;
}
//
// Take the Newton steps:
//
for(unsigned i = 1; i <= count; ++i)
{
//c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
}
if((c <= a) || (c >= b))
{
// Oops, failure, try a secant step:
c = secant_interpolate(a, b, fa, fb);
}
return c;
}
template <class T>
T cubic_interpolate(const T& a, const T& b, const T& d,
const T& e, const T& fa, const T& fb,
const T& fd, const T& fe)
{
//
// Uses inverse cubic interpolation of f(x) at points
// [a,b,d,e] to obtain an approximate root of f(x).
// Points d and e lie outside the interval [a,b]
// and are the third and forth best approximations
// to the root that we have found so far.
//
// Note: this does not guarantee to find a root
// inside [a, b], so we fall back to quadratic
// interpolation in case of an erroneous result.
//
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
<< " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb
<< " fd = " << fd << " fe = " << fe);
T q11 = (d - e) * fd / (fe - fd);
T q21 = (b - d) * fb / (fd - fb);
T q31 = (a - b) * fa / (fb - fa);
T d21 = (b - d) * fd / (fd - fb);
T d31 = (a - b) * fb / (fb - fa);
BOOST_MATH_INSTRUMENT_CODE(
"q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
<< " d21 = " << d21 << " d31 = " << d31);
T q22 = (d21 - q11) * fb / (fe - fb);
T q32 = (d31 - q21) * fa / (fd - fa);
T d32 = (d31 - q21) * fd / (fd - fa);
T q33 = (d32 - q22) * fa / (fe - fa);
T c = q31 + q32 + q33 + a;
BOOST_MATH_INSTRUMENT_CODE(
"q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
<< " q33 = " << q33 << " c = " << c);
if((c <= a) || (c >= b))
{
// Out of bounds step, fall back to quadratic interpolation:
c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
BOOST_MATH_INSTRUMENT_CODE(
"Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
}
return c;
}
} // namespace detail
template <class F, class T, class Tol, class Policy>
std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
{
//
// Main entry point and logic for Toms Algorithm 748
// root finder.
//
BOOST_MATH_STD_USING // For ADL of std math functions
static const char* function = "boost::math::tools::toms748_solve<%1%>";
boost::uintmax_t count = max_iter;
T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
static const T mu = 0.5f;
// initialise a, b and fa, fb:
a = ax;
b = bx;
if(a >= b)
return boost::math::detail::pair_from_single(policies::raise_domain_error(
function,
"Parameters a and b out of order: a=%1%", a, pol));
fa = fax;
fb = fbx;
if(tol(a, b) || (fa == 0) || (fb == 0))
{
max_iter = 0;
if(fa == 0)
b = a;
else if(fb == 0)
a = b;
return std::make_pair(a, b);
}
if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
return boost::math::detail::pair_from_single(policies::raise_domain_error(
function,
"Parameters a and b do not bracket the root: a=%1%", a, pol));
// dummy value for fd, e and fe:
fe = e = fd = 1e5F;
if(fa != 0)
{
//
// On the first step we take a secant step:
//
c = detail::secant_interpolate(a, b, fa, fb);
detail::bracket(f, a, b, c, fa, fb, d, fd);
--count;
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
if(count && (fa != 0) && !tol(a, b))
{
//
// On the second step we take a quadratic interpolation:
//
c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
e = d;
fe = fd;
detail::bracket(f, a, b, c, fa, fb, d, fd);
--count;
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
}
}
while(count && (fa != 0) && !tol(a, b))
{
// save our brackets:
a0 = a;
b0 = b;
//
// Starting with the third step taken
// we can use either quadratic or cubic interpolation.
// Cubic interpolation requires that all four function values
// fa, fb, fd, and fe are distinct, should that not be the case
// then variable prof will get set to true, and we'll end up
// taking a quadratic step instead.
//
T min_diff = tools::min_value<T>() * 32;
bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
if(prof)
{
c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
}
else
{
c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
}
//
// re-bracket, and check for termination:
//
e = d;
fe = fd;
detail::bracket(f, a, b, c, fa, fb, d, fd);
if((0 == --count) || (fa == 0) || tol(a, b))
break;
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
//
// Now another interpolated step:
//
prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
if(prof)
{
c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
}
else
{
c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
}
//
// Bracket again, and check termination condition, update e:
//
detail::bracket(f, a, b, c, fa, fb, d, fd);
if((0 == --count) || (fa == 0) || tol(a, b))
break;
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
//
// Now we take a double-length secant step:
//
if(fabs(fa) < fabs(fb))
{
u = a;
fu = fa;
}
else
{
u = b;
fu = fb;
}
c = u - 2 * (fu / (fb - fa)) * (b - a);
if(fabs(c - u) > (b - a) / 2)
{
c = a + (b - a) / 2;
}
//
// Bracket again, and check termination condition:
//
e = d;
fe = fd;
detail::bracket(f, a, b, c, fa, fb, d, fd);
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
if((0 == --count) || (fa == 0) || tol(a, b))
break;
//
// And finally... check to see if an additional bisection step is
// to be taken, we do this if we're not converging fast enough:
//
if((b - a) < mu * (b0 - a0))
continue;
//
// bracket again on a bisection:
//
e = d;
fe = fd;
detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
--count;
BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
} // while loop
max_iter -= count;
if(fa == 0)
{
b = a;
}
else if(fb == 0)
{
a = b;
}
BOOST_MATH_LOG_COUNT(max_iter)
return std::make_pair(a, b);
}
template <class F, class T, class Tol>
inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
{
return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
}
template <class F, class T, class Tol, class Policy>
inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
{
max_iter -= 2;
std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
max_iter += 2;
return r;
}
template <class F, class T, class Tol>
inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
{
return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
}
template <class F, class T, class Tol, class Policy>
std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
{
BOOST_MATH_STD_USING
static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
//
// Set up inital brackets:
//
T a = guess;
T b = a;
T fa = f(a);
T fb = fa;
//
// Set up invocation count:
//
boost::uintmax_t count = max_iter - 1;
int step = 32;
if((fa < 0) == (guess < 0 ? !rising : rising))
{
//
// Zero is to the right of b, so walk upwards
// until we find it:
//
while((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(count == 0)
return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol));
//
// Heuristic: normally it's best not to increase the step sizes as we'll just end up
// with a really wide range to search for the root. However, if the initial guess was *really*
// bad then we need to speed up the search otherwise we'll take forever if we're orders of
// magnitude out. This happens most often if the guess is a small value (say 1) and the result
// we're looking for is close to std::numeric_limits<T>::min().
//
if((max_iter - count) % step == 0)
{
factor *= 2;
if(step > 1) step /= 2;
}
//
// Now go ahead and move our guess by "factor":
//
a = b;
fa = fb;
b *= factor;
fb = f(b);
--count;
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
}
}
else
{
//
// Zero is to the left of a, so walk downwards
// until we find it:
//
while((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(fabs(a) < tools::min_value<T>())
{
// Escape route just in case the answer is zero!
max_iter -= count;
max_iter += 1;
return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
}
if(count == 0)
return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol));
//
// Heuristic: normally it's best not to increase the step sizes as we'll just end up
// with a really wide range to search for the root. However, if the initial guess was *really*
// bad then we need to speed up the search otherwise we'll take forever if we're orders of
// magnitude out. This happens most often if the guess is a small value (say 1) and the result
// we're looking for is close to std::numeric_limits<T>::min().
//
if((max_iter - count) % step == 0)
{
factor *= 2;
if(step > 1) step /= 2;
}
//
// Now go ahead and move are guess by "factor":
//
b = a;
fb = fa;
a /= factor;
fa = f(a);
--count;
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
}
}
max_iter -= count;
max_iter += 1;
std::pair<T, T> r = toms748_solve(
f,
(a < 0 ? b : a),
(a < 0 ? a : b),
(a < 0 ? fb : fa),
(a < 0 ? fa : fb),
tol,
count,
pol);
max_iter += count;
BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
BOOST_MATH_LOG_COUNT(max_iter)
return r;
}
template <class F, class T, class Tol>
inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
{
return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
}
} // namespace tools
} // namespace math
} // namespace boost
#endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
|