1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
|
/*=============================================================================
Copyright (c) 2001-2011 Joel de Guzman
Copyright (c) 2001-2012 Hartmut Kaiser
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#if !defined(BOOST_SPIRIT_ATTRIBUTES_JANUARY_29_2007_0954AM)
#define BOOST_SPIRIT_ATTRIBUTES_JANUARY_29_2007_0954AM
#if defined(_MSC_VER)
#pragma once
#endif
#include <boost/spirit/home/support/unused.hpp>
#include <boost/spirit/home/support/has_semantic_action.hpp>
#include <boost/spirit/home/support/attributes_fwd.hpp>
#include <boost/spirit/home/support/container.hpp>
#include <boost/spirit/home/support/detail/hold_any.hpp>
#include <boost/spirit/home/support/detail/as_variant.hpp>
#include <boost/optional/optional.hpp>
#include <boost/fusion/include/transform.hpp>
#include <boost/fusion/include/filter_if.hpp>
#include <boost/fusion/include/as_vector.hpp>
#include <boost/fusion/include/push_front.hpp>
#include <boost/fusion/include/pop_front.hpp>
#include <boost/fusion/include/is_sequence.hpp>
#include <boost/fusion/include/for_each.hpp>
#include <boost/fusion/include/is_view.hpp>
#include <boost/fusion/include/mpl.hpp>
#include <boost/foreach.hpp>
#include <boost/utility/value_init.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/end.hpp>
#include <boost/mpl/find_if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/deref.hpp>
#include <boost/mpl/distance.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/has_xxx.hpp>
#include <boost/mpl/equal.hpp>
#include <boost/proto/proto_fwd.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/variant.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/config.hpp>
#include <vector>
#include <utility>
#include <ios>
///////////////////////////////////////////////////////////////////////////////
namespace boost { namespace spirit { namespace traits
{
///////////////////////////////////////////////////////////////////////////
// This file deals with attribute related functions and meta-functions
// including generalized attribute transformation utilities for Spirit
// components.
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// Find out if T can be a (strong) substitute for Expected attribute
namespace detail
{
template <typename T, typename Expected>
struct value_type_is_substitute
: is_substitute<
typename container_value<T>::type
, typename container_value<Expected>::type>
{};
template <typename T, typename Expected, typename Enable = void>
struct is_substitute_impl : is_same<T, Expected> {};
template <typename T, typename Expected>
struct is_substitute_impl<T, Expected,
typename enable_if<
mpl::and_<
fusion::traits::is_sequence<T>,
fusion::traits::is_sequence<Expected>,
mpl::equal<T, Expected, is_substitute<mpl::_1, mpl::_2> >
>
>::type>
: mpl::true_ {};
template <typename T, typename Expected>
struct is_substitute_impl<T, Expected,
typename enable_if<
mpl::and_<
is_container<T>,
is_container<Expected>,
detail::value_type_is_substitute<T, Expected>
>
>::type>
: mpl::true_ {};
}
template <typename T, typename Expected, typename Enable /*= void*/>
struct is_substitute
: detail::is_substitute_impl<T, Expected> {};
template <typename T, typename Expected>
struct is_substitute<optional<T>, optional<Expected> >
: is_substitute<T, Expected> {};
template <typename T>
struct is_substitute<T, T
, typename enable_if<not_is_optional<T> >::type>
: mpl::true_ {};
///////////////////////////////////////////////////////////////////////////
// Find out if T can be a weak substitute for Expected attribute
namespace detail
{
// A type, which is convertible to the attribute is at the same time
// usable as its weak substitute.
template <typename T, typename Expected, typename Enable = void>
struct is_weak_substitute_impl : is_convertible<T, Expected> {};
// // An exposed attribute is a weak substitute for a supplied container
// // attribute if it is a weak substitute for its value_type. This is
// // true as all character parsers are compatible with a container
// // attribute having the corresponding character type as its value_type.
// template <typename T, typename Expected>
// struct is_weak_substitute_for_value_type
// : is_weak_substitute<T, typename container_value<Expected>::type>
// {};
//
// template <typename T, typename Expected>
// struct is_weak_substitute_impl<T, Expected,
// typename enable_if<
// mpl::and_<
// mpl::not_<is_string<T> >
// , is_string<Expected>
// , is_weak_substitute_for_value_type<T, Expected> >
// >::type>
// : mpl::true_
// {};
// An exposed container attribute is a weak substitute for a supplied
// container attribute if and only if their value_types are weak
// substitutes.
template <typename T, typename Expected>
struct value_type_is_weak_substitute
: is_weak_substitute<
typename container_value<T>::type
, typename container_value<Expected>::type>
{};
template <typename T, typename Expected>
struct is_weak_substitute_impl<T, Expected,
typename enable_if<
mpl::and_<
is_container<T>
, is_container<Expected>
, value_type_is_weak_substitute<T, Expected> >
>::type>
: mpl::true_ {};
// Two fusion sequences are weak substitutes if and only if their
// elements are pairwise weak substitutes.
template <typename T, typename Expected>
struct is_weak_substitute_impl<T, Expected,
typename enable_if<
mpl::and_<
fusion::traits::is_sequence<T>
, fusion::traits::is_sequence<Expected>
, mpl::equal<T, Expected, is_weak_substitute<mpl::_1, mpl::_2> > >
>::type>
: mpl::true_ {};
// If this is not defined, the main template definition above will return
// true if T is convertible to the first type in a fusion::vector. We
// globally declare any non-Fusion sequence T as not compatible with any
// Fusion sequence 'Expected'.
template <typename T, typename Expected>
struct is_weak_substitute_impl<T, Expected,
typename enable_if<
mpl::and_<
mpl::not_<fusion::traits::is_sequence<T> >
, fusion::traits::is_sequence<Expected> >
>::type>
: mpl::false_ {};
}
// main template forwards to detail namespace, this helps older compilers
// to disambiguate things
template <typename T, typename Expected, typename Enable /*= void*/>
struct is_weak_substitute
: detail::is_weak_substitute_impl<T, Expected> {};
template <typename T, typename Expected>
struct is_weak_substitute<optional<T>, optional<Expected> >
: is_weak_substitute<T, Expected> {};
template <typename T, typename Expected>
struct is_weak_substitute<optional<T>, Expected>
: is_weak_substitute<T, Expected> {};
template <typename T, typename Expected>
struct is_weak_substitute<T, optional<Expected> >
: is_weak_substitute<T, Expected> {};
#if !defined(BOOST_VARIANT_DO_NOT_USE_VARIADIC_TEMPLATES)
template <typename T, typename Expected>
struct is_weak_substitute<boost::variant<T>, Expected>
: is_weak_substitute<T, Expected>
{};
template <typename T0, typename T1, typename ...TN, typename Expected>
struct is_weak_substitute<boost::variant<T0, T1, TN...>,
Expected>
: mpl::bool_<is_weak_substitute<T0, Expected>::type::value &&
is_weak_substitute<boost::variant<T1, TN...>, Expected>::type::value>
{};
#else
#define BOOST_SPIRIT_IS_WEAK_SUBSTITUTE(z, N, _) \
is_weak_substitute<BOOST_PP_CAT(T, N), Expected>::type::value && \
/***/
// make sure unused variant parameters do not affect the outcome
template <typename Expected>
struct is_weak_substitute<boost::detail::variant::void_, Expected>
: mpl::true_
{};
template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Expected>
struct is_weak_substitute<
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Expected>
: mpl::bool_<BOOST_PP_REPEAT(BOOST_VARIANT_LIMIT_TYPES
, BOOST_SPIRIT_IS_WEAK_SUBSTITUTE, _) true>
{};
#undef BOOST_SPIRIT_IS_WEAK_SUBSTITUTE
#endif
template <typename T>
struct is_weak_substitute<T, T
, typename enable_if<
mpl::and_<not_is_optional<T>, not_is_variant<T> >
>::type>
: mpl::true_ {};
///////////////////////////////////////////////////////////////////////////
template <typename T, typename Enable/* = void*/>
struct is_proxy : mpl::false_ {};
template <typename T>
struct is_proxy<T,
typename enable_if<
mpl::and_<
fusion::traits::is_sequence<T>,
fusion::traits::is_view<T>
>
>::type>
: mpl::true_ {};
namespace detail
{
// By declaring a nested struct in your class/struct, you tell
// spirit that it is regarded as a variant type. The minimum
// required interface for such a variant is that it has constructors
// for various types supported by your variant and a typedef 'types'
// which is an mpl sequence of the contained types.
//
// This is an intrusive interface. For a non-intrusive interface,
// use the not_is_variant trait.
BOOST_MPL_HAS_XXX_TRAIT_DEF(adapted_variant_tag)
}
template <typename T, typename Domain, typename Enable/* = void*/>
struct not_is_variant
: mpl::not_<detail::has_adapted_variant_tag<T> >
{};
template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Domain>
struct not_is_variant<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Domain>
: mpl::false_
{};
template <typename T, typename Domain>
struct not_is_variant<boost::optional<T>, Domain>
: not_is_variant<T, Domain>
{};
// we treat every type as if it where the variant (as this meta function is
// invoked for variant types only)
template <typename T>
struct variant_type
: mpl::identity<T>
{};
template <typename T>
struct variant_type<boost::optional<T> >
: variant_type<T>
{};
///////////////////////////////////////////////////////////////////////////
// The compute_compatible_component_variant
///////////////////////////////////////////////////////////////////////////
namespace detail
{
// A component is compatible to a given Attribute type if the
// Attribute is the same as the expected type of the component or if
// it is convertible to the expected type.
template <typename Expected, typename Attribute>
struct attribute_is_compatible
: is_convertible<Attribute, Expected>
{};
template <typename Expected, typename Attribute>
struct attribute_is_compatible<Expected, boost::optional<Attribute> >
: is_convertible<Attribute, Expected>
{};
template <typename Container>
struct is_hold_any_container
: traits::is_hold_any<typename traits::container_value<Container>::type>
{};
}
template <typename Attribute, typename Expected
, typename IsNotVariant = mpl::false_, typename Enable = void>
struct compute_compatible_component_variant
: mpl::or_<
traits::detail::attribute_is_compatible<Expected, Attribute>
, traits::is_hold_any<Expected>
, mpl::eval_if<
is_container<Expected>
, traits::detail::is_hold_any_container<Expected>
, mpl::false_> >
{};
namespace detail
{
BOOST_MPL_HAS_XXX_TRAIT_DEF(types)
}
template <typename Variant, typename Expected>
struct compute_compatible_component_variant<Variant, Expected, mpl::false_
, typename enable_if<detail::has_types<Variant> >::type>
{
typedef typename traits::variant_type<Variant>::type variant_type;
typedef typename variant_type::types types;
typedef typename mpl::end<types>::type end;
typedef typename
mpl::find_if<types, is_same<Expected, mpl::_1> >::type
iter;
typedef typename mpl::distance<
typename mpl::begin<types>::type, iter
>::type distance;
// true_ if the attribute matches one of the types in the variant
typedef typename mpl::not_<is_same<iter, end> >::type type;
enum { value = type::value };
// return the type in the variant the attribute is compatible with
typedef typename
mpl::eval_if<type, mpl::deref<iter>, mpl::identity<unused_type> >::type
compatible_type;
// return whether the given type is compatible with the Expected type
static bool is_compatible(int which)
{
return which == distance::value;
}
};
template <typename Expected, typename Attribute, typename Domain>
struct compute_compatible_component
: compute_compatible_component_variant<Attribute, Expected
, typename spirit::traits::not_is_variant<Attribute, Domain>::type> {};
template <typename Expected, typename Domain>
struct compute_compatible_component<Expected, unused_type, Domain>
: mpl::false_ {};
template <typename Attribute, typename Domain>
struct compute_compatible_component<unused_type, Attribute, Domain>
: mpl::false_ {};
template <typename Domain>
struct compute_compatible_component<unused_type, unused_type, Domain>
: mpl::false_ {};
///////////////////////////////////////////////////////////////////////////
// return the type currently stored in the given variant
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct variant_which<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
static int call(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& v)
{
return v.which();
}
};
template <typename T>
int which(T const& v)
{
return variant_which<T>::call(v);
}
///////////////////////////////////////////////////////////////////////////
template <typename T, typename Domain, typename Enable/* = void*/>
struct not_is_optional
: mpl::true_
{};
template <typename T, typename Domain>
struct not_is_optional<boost::optional<T>, Domain>
: mpl::false_
{};
///////////////////////////////////////////////////////////////////////////
// attribute_of
//
// Get the component's attribute
///////////////////////////////////////////////////////////////////////////
template <typename Component
, typename Context = unused_type, typename Iterator = unused_type>
struct attribute_of
{
typedef typename Component::template
attribute<Context, Iterator>::type type;
};
///////////////////////////////////////////////////////////////////////////
// attribute_not_unused
//
// An mpl meta-function class that determines whether a component's
// attribute is not unused.
///////////////////////////////////////////////////////////////////////////
template <typename Context, typename Iterator = unused_type>
struct attribute_not_unused
{
template <typename Component>
struct apply
: not_is_unused<typename
attribute_of<Component, Context, Iterator>::type>
{};
};
///////////////////////////////////////////////////////////////////////////
// Retrieve the attribute type to use from the given type
//
// This is needed to extract the correct attribute type from proxy classes
// as utilized in FUSION_ADAPT_ADT et. al.
///////////////////////////////////////////////////////////////////////////
template <typename Attribute, typename Enable/* = void*/>
struct attribute_type : mpl::identity<Attribute> {};
///////////////////////////////////////////////////////////////////////////
// Retrieve the size of a fusion sequence (compile time)
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct sequence_size
: fusion::result_of::size<T>
{};
template <>
struct sequence_size<unused_type>
: mpl::int_<0>
{};
///////////////////////////////////////////////////////////////////////////
// Retrieve the size of an attribute (runtime)
///////////////////////////////////////////////////////////////////////////
namespace detail
{
template <typename Attribute, typename Enable = void>
struct attribute_size_impl
{
typedef std::size_t type;
static type call(Attribute const&)
{
return 1;
}
};
template <typename Attribute>
struct attribute_size_impl<Attribute
, typename enable_if<
mpl::and_<
fusion::traits::is_sequence<Attribute>
, mpl::not_<traits::is_container<Attribute> >
>
>::type>
{
typedef typename fusion::result_of::size<Attribute>::value_type type;
static type call(Attribute const& attr)
{
return fusion::size(attr);
}
};
template <typename Attribute>
struct attribute_size_impl<Attribute
, typename enable_if<
mpl::and_<
traits::is_container<Attribute>
, mpl::not_<traits::is_iterator_range<Attribute> >
>
>::type>
{
typedef typename Attribute::size_type type;
static type call(Attribute const& attr)
{
return attr.size();
}
};
}
template <typename Attribute, typename Enable/* = void*/>
struct attribute_size
: detail::attribute_size_impl<Attribute>
{};
template <typename Attribute>
struct attribute_size<optional<Attribute> >
{
typedef typename attribute_size<Attribute>::type type;
static type call(optional<Attribute> const& val)
{
if (!val)
return 0;
return traits::size(val.get());
}
};
namespace detail
{
struct attribute_size_visitor : static_visitor<std::size_t>
{
template <typename T>
std::size_t operator()(T const& val) const
{
return spirit::traits::size(val);
}
};
}
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct attribute_size<variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
typedef std::size_t type;
static type call(variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& val)
{
return apply_visitor(detail::attribute_size_visitor(), val);
}
};
template <typename Iterator>
struct attribute_size<iterator_range<Iterator> >
{
typedef typename boost::detail::iterator_traits<Iterator>::
difference_type type;
static type call(iterator_range<Iterator> const& r)
{
return boost::detail::distance(r.begin(), r.end());
}
};
template <>
struct attribute_size<unused_type>
{
typedef std::size_t type;
static type call(unused_type)
{
return 0;
}
};
template <typename Attribute>
typename attribute_size<Attribute>::type
size (Attribute const& attr)
{
return attribute_size<Attribute>::call(attr);
}
///////////////////////////////////////////////////////////////////////////
// pass_attribute
//
// Determines how we pass attributes to semantic actions. This
// may be specialized. By default, all attributes are wrapped in
// a fusion sequence, because the attribute has to be treated as being
// a single value in any case (even if it actually already is a fusion
// sequence in its own).
///////////////////////////////////////////////////////////////////////////
template <typename Component, typename Attribute, typename Enable/* = void*/>
struct pass_attribute
{
typedef fusion::vector1<Attribute&> type;
};
///////////////////////////////////////////////////////////////////////////
// Subclass a pass_attribute specialization from this to wrap
// the attribute in a tuple only IFF it is not already a fusion tuple.
///////////////////////////////////////////////////////////////////////////
template <typename Attribute, typename Force = mpl::false_>
struct wrap_if_not_tuple
: mpl::if_<
fusion::traits::is_sequence<Attribute>
, Attribute&, fusion::vector1<Attribute&> >
{};
template <typename Attribute>
struct wrap_if_not_tuple<Attribute, mpl::true_>
{
typedef fusion::vector1<Attribute&> type;
};
template <>
struct wrap_if_not_tuple<unused_type, mpl::false_>
{
typedef unused_type type;
};
template <>
struct wrap_if_not_tuple<unused_type const, mpl::false_>
{
typedef unused_type type;
};
///////////////////////////////////////////////////////////////////////////
// build_optional
//
// Build a boost::optional from T. Return unused_type if T is unused_type.
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct build_optional
{
typedef boost::optional<T> type;
};
template <typename T>
struct build_optional<boost::optional<T> >
{
typedef boost::optional<T> type;
};
template <>
struct build_optional<unused_type>
{
typedef unused_type type;
};
///////////////////////////////////////////////////////////////////////////
// build_std_vector
//
// Build a std::vector from T. Return unused_type if T is unused_type.
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct build_std_vector
{
typedef std::vector<T> type;
};
template <>
struct build_std_vector<unused_type>
{
typedef unused_type type;
};
///////////////////////////////////////////////////////////////////////////
// filter_unused_attributes
//
// Remove unused_types from a sequence
///////////////////////////////////////////////////////////////////////////
// Compute the list of all *used* attributes of sub-components
// (filter all unused attributes from the list)
template <typename Sequence>
struct filter_unused_attributes
: fusion::result_of::filter_if<Sequence, not_is_unused<mpl::_> >
{};
///////////////////////////////////////////////////////////////////////////
// sequence_attribute_transform
//
// This transform is invoked for every attribute in a sequence allowing
// to modify the attribute type exposed by a component to the enclosing
// sequence component. By default no transformation is performed.
///////////////////////////////////////////////////////////////////////////
template <typename Attribute, typename Domain>
struct sequence_attribute_transform
: mpl::identity<Attribute>
{};
///////////////////////////////////////////////////////////////////////////
// permutation_attribute_transform
//
// This transform is invoked for every attribute in a sequence allowing
// to modify the attribute type exposed by a component to the enclosing
// permutation component. By default a build_optional transformation is
// performed.
///////////////////////////////////////////////////////////////////////////
template <typename Attribute, typename Domain>
struct permutation_attribute_transform
: traits::build_optional<Attribute>
{};
///////////////////////////////////////////////////////////////////////////
// sequential_or_attribute_transform
//
// This transform is invoked for every attribute in a sequential_or allowing
// to modify the attribute type exposed by a component to the enclosing
// sequential_or component. By default a build_optional transformation is
// performed.
///////////////////////////////////////////////////////////////////////////
template <typename Attribute, typename Domain>
struct sequential_or_attribute_transform
: traits::build_optional<Attribute>
{};
///////////////////////////////////////////////////////////////////////////
// build_fusion_vector
//
// Build a fusion vector from a fusion sequence. All unused attributes
// are filtered out. If the result is empty after the removal of unused
// types, return unused_type. If the input sequence is an unused_type,
// also return unused_type.
///////////////////////////////////////////////////////////////////////////
template <typename Sequence>
struct build_fusion_vector
{
// Remove all unused attributes
typedef typename
filter_unused_attributes<Sequence>::type
filtered_attributes;
// Build a fusion vector from a fusion sequence (Sequence),
// But *only if* the sequence is not empty. i.e. if the
// sequence is empty, our result will be unused_type.
typedef typename
mpl::eval_if<
fusion::result_of::empty<filtered_attributes>
, mpl::identity<unused_type>
, fusion::result_of::as_vector<filtered_attributes>
>::type
type;
};
template <>
struct build_fusion_vector<unused_type>
{
typedef unused_type type;
};
///////////////////////////////////////////////////////////////////////////
// build_attribute_sequence
//
// Build a fusion sequence attribute sequence from a sequence of
// components. Transform<T>::type is called on each element.
///////////////////////////////////////////////////////////////////////////
template <typename Sequence, typename Context
, template <typename T, typename D> class Transform
, typename Iterator = unused_type, typename Domain = unused_type>
struct build_attribute_sequence
{
struct element_attribute
{
template <typename T>
struct result;
template <typename F, typename Element>
struct result<F(Element)>
{
typedef typename
Transform<
typename attribute_of<Element, Context, Iterator>::type
, Domain
>::type
type;
};
// never called, but needed for decltype-based result_of (C++0x)
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
template <typename Element>
typename result<element_attribute(Element)>::type
operator()(Element&&) const;
#endif
};
// Compute the list of attributes of all sub-components
typedef typename
fusion::result_of::transform<Sequence, element_attribute>::type
type;
};
///////////////////////////////////////////////////////////////////////////
// has_no_unused
//
// Test if there are no unused attributes in Sequence
///////////////////////////////////////////////////////////////////////////
template <typename Sequence>
struct has_no_unused
: is_same<
typename mpl::find_if<Sequence, is_same<mpl::_, unused_type> >::type
, typename mpl::end<Sequence>::type>
{};
namespace detail
{
template <typename Sequence, bool no_unused
, int size = mpl::size<Sequence>::value>
struct build_collapsed_variant;
// N element case, no unused
template <typename Sequence, int size>
struct build_collapsed_variant<Sequence, true, size>
: spirit::detail::as_variant<Sequence> {};
// N element case with unused
template <typename Sequence, int size>
struct build_collapsed_variant<Sequence, false, size>
{
typedef boost::optional<
typename spirit::detail::as_variant<
typename fusion::result_of::pop_front<Sequence>::type
>::type
> type;
};
// 1 element case, no unused
template <typename Sequence>
struct build_collapsed_variant<Sequence, true, 1>
: mpl::front<Sequence> {};
// 1 element case, with unused
template <typename Sequence>
struct build_collapsed_variant<Sequence, false, 1>
: mpl::front<Sequence> {};
// 2 element case, no unused
template <typename Sequence>
struct build_collapsed_variant<Sequence, true, 2>
: spirit::detail::as_variant<Sequence> {};
// 2 element case, with unused
template <typename Sequence>
struct build_collapsed_variant<Sequence, false, 2>
{
typedef boost::optional<
typename mpl::deref<
typename mpl::next<
typename mpl::begin<Sequence>::type
>::type
>::type
>
type;
};
}
///////////////////////////////////////////////////////////////////////////
// alternative_attribute_transform
//
// This transform is invoked for every attribute in an alternative allowing
// to modify the attribute type exposed by a component to the enclosing
// alternative component. By default no transformation is performed.
///////////////////////////////////////////////////////////////////////////
template <typename Attribute, typename Domain>
struct alternative_attribute_transform
: mpl::identity<Attribute>
{};
///////////////////////////////////////////////////////////////////////////
// build_variant
//
// Build a boost::variant from a fusion sequence. build_variant makes sure
// that 1) all attributes in the variant are unique 2) puts the unused
// attribute, if there is any, to the front and 3) collapses single element
// variants, variant<T> to T.
///////////////////////////////////////////////////////////////////////////
template <typename Sequence>
struct build_variant
{
// Remove all unused attributes.
typedef typename
filter_unused_attributes<Sequence>::type
filtered_attributes;
typedef has_no_unused<Sequence> no_unused;
// If the original attribute list does not contain any unused
// attributes, it is used, otherwise a single unused_type is
// pushed to the front of the list. This is to make sure that if
// there is an unused_type in the list, it is the first one.
typedef typename
mpl::eval_if<
no_unused,
mpl::identity<Sequence>,
fusion::result_of::push_front<filtered_attributes, unused_type>
>::type
attribute_sequence;
// Make sure each of the types occur only once in the type list
typedef typename
mpl::fold<
attribute_sequence, mpl::vector<>,
mpl::if_<
mpl::contains<mpl::_1, mpl::_2>,
mpl::_1, mpl::push_back<mpl::_1, mpl::_2>
>
>::type
no_duplicates;
// If there is only one type in the list of types we strip off the
// variant. IOTW, collapse single element variants, variant<T> to T.
// Take note that this also collapses variant<unused_type, T> to T.
typedef typename
traits::detail::build_collapsed_variant<
no_duplicates, no_unused::value>::type
type;
};
///////////////////////////////////////////////////////////////////////////
// transform_attribute
//
// Sometimes the user needs to transform the attribute types for certain
// attributes. This template can be used as a customization point, where
// the user is able specify specific transformation rules for any attribute
// type.
///////////////////////////////////////////////////////////////////////////
template <typename Exposed, typename Transformed, typename Domain
, typename Enable/* = void*/>
struct transform_attribute;
///////////////////////////////////////////////////////////////////////////
template <typename Domain, typename Transformed, typename Exposed>
typename spirit::result_of::pre_transform<Exposed, Transformed, Domain>::type
pre_transform(Exposed& attr BOOST_PROTO_DISABLE_IF_IS_CONST(Exposed))
{
return transform_attribute<Exposed, Transformed, Domain>::pre(attr);
}
template <typename Domain, typename Transformed, typename Exposed>
typename spirit::result_of::pre_transform<Exposed const, Transformed, Domain>::type
pre_transform(Exposed const& attr)
{
return transform_attribute<Exposed const, Transformed, Domain>::pre(attr);
}
///////////////////////////////////////////////////////////////////////////
// make_attribute
//
// All parsers and generators have specific attribute types.
// Spirit parsers and generators are passed an attribute; these are either
// references to the expected type, or an unused_type -- to flag that we do
// not care about the attribute. For semantic actions, however, we need to
// have a real value to pass to the semantic action. If the client did not
// provide one, we will have to synthesize the value. This class takes care
// of that. *Note that this behavior has changed. From Boost 1.47, semantic
// actions always take in the passed attribute as-is if the PP constant:
// BOOST_SPIRIT_ACTIONS_ALLOW_ATTR_COMPAT is defined.
///////////////////////////////////////////////////////////////////////////
template <typename Attribute, typename ActualAttribute>
struct make_attribute
{
typedef typename remove_const<Attribute>::type attribute_type;
typedef typename
mpl::if_<
is_same<typename remove_const<ActualAttribute>::type, unused_type>
, attribute_type
, ActualAttribute&>::type
type;
typedef typename
mpl::if_<
is_same<typename remove_const<ActualAttribute>::type, unused_type>
, attribute_type
, ActualAttribute>::type
value_type;
static Attribute call(unused_type)
{
// synthesize the attribute/parameter
return boost::get(value_initialized<attribute_type>());
}
template <typename T>
static T& call(T& value)
{
return value; // just pass the one provided
}
};
template <typename Attribute, typename ActualAttribute>
struct make_attribute<Attribute&, ActualAttribute>
: make_attribute<Attribute, ActualAttribute>
{};
template <typename Attribute, typename ActualAttribute>
struct make_attribute<Attribute const&, ActualAttribute>
: make_attribute<Attribute const, ActualAttribute>
{};
template <typename ActualAttribute>
struct make_attribute<unused_type, ActualAttribute>
{
typedef unused_type type;
typedef unused_type value_type;
static unused_type call(unused_type)
{
return unused;
}
};
///////////////////////////////////////////////////////////////////////////
// swap_impl
//
// Swap (with proper handling of unused_types)
///////////////////////////////////////////////////////////////////////////
template <typename A, typename B>
void swap_impl(A& a, B& b)
{
A temp = a;
a = b;
b = temp;
}
template <typename T>
void swap_impl(T& a, T& b)
{
using namespace std;
swap(a, b);
}
template <typename A>
void swap_impl(A&, unused_type)
{
}
template <typename A>
void swap_impl(unused_type, A&)
{
}
inline void swap_impl(unused_type, unused_type)
{
}
///////////////////////////////////////////////////////////////////////////
// Strips single element fusion vectors into its 'naked'
// form: vector<T> --> T
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct strip_single_element_vector
{
typedef T type;
};
#if !defined(BOOST_FUSION_HAS_VARIADIC_VECTOR)
template <typename T>
struct strip_single_element_vector<fusion::vector1<T> >
{
typedef T type;
};
#endif
template <typename T>
struct strip_single_element_vector<fusion::vector<T> >
{
typedef T type;
};
///////////////////////////////////////////////////////////////////////////
// meta function to return whether the argument is a one element fusion
// sequence
///////////////////////////////////////////////////////////////////////////
template <typename T
, bool IsFusionSeq = fusion::traits::is_sequence<T>::value
, bool IsProtoExpr = proto::is_expr<T>::value>
struct one_element_sequence
: mpl::false_
{};
template <typename T>
struct one_element_sequence<T, true, false>
: mpl::bool_<mpl::size<T>::value == 1>
{};
///////////////////////////////////////////////////////////////////////////
// clear
//
// Clear data efficiently
///////////////////////////////////////////////////////////////////////////
template <typename T>
void clear(T& val);
namespace detail
{
// this is used by the variant and fusion sequence dispatch
struct clear_visitor : static_visitor<>
{
template <typename T>
void operator()(T& val) const
{
spirit::traits::clear(val);
}
};
// default
template <typename T>
void clear_impl2(T& val, mpl::false_)
{
val = T();
}
// for fusion sequences
template <typename T>
void clear_impl2(T& val, mpl::true_)
{
fusion::for_each(val, clear_visitor());
}
// dispatch default or fusion sequence
template <typename T>
void clear_impl(T& val, mpl::false_)
{
clear_impl2(val, fusion::traits::is_sequence<T>());
}
// STL containers
template <typename T>
void clear_impl(T& val, mpl::true_)
{
val.clear();
}
}
template <typename T, typename Enable/* = void*/>
struct clear_value
{
static void call(T& val)
{
detail::clear_impl(val, typename is_container<T>::type());
}
};
// optionals
template <typename T>
struct clear_value<boost::optional<T> >
{
static void call(boost::optional<T>& val)
{
if (val)
val = none; // leave optional uninitialized
}
};
// variants
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct clear_value<variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
static void call(variant<BOOST_VARIANT_ENUM_PARAMS(T)>& val)
{
apply_visitor(detail::clear_visitor(), val);
}
};
// iterator range
template <typename T>
struct clear_value<iterator_range<T> >
{
static void call(iterator_range<T>& val)
{
val = iterator_range<T>(val.end(), val.end());
}
};
// main dispatch
template <typename T>
void clear(T& val)
{
clear_value<T>::call(val);
}
// for unused
inline void clear(unused_type)
{
}
///////////////////////////////////////////////////////////////////////////
namespace detail
{
template <typename Out>
struct print_fusion_sequence
{
print_fusion_sequence(Out& out_)
: out(out_), is_first(true) {}
typedef void result_type;
template <typename T>
void operator()(T const& val) const
{
if (is_first)
is_first = false;
else
out << ", ";
spirit::traits::print_attribute(out, val);
}
Out& out;
mutable bool is_first;
};
// print elements in a variant
template <typename Out>
struct print_visitor : static_visitor<>
{
print_visitor(Out& out_) : out(out_) {}
template <typename T>
void operator()(T const& val) const
{
spirit::traits::print_attribute(out, val);
}
Out& out;
};
}
template <typename Out, typename T, typename Enable>
struct print_attribute_debug
{
// for plain data types
template <typename T_>
static void call_impl3(Out& out, T_ const& val, mpl::false_)
{
out << val;
}
// for fusion data types
template <typename T_>
static void call_impl3(Out& out, T_ const& val, mpl::true_)
{
out << '[';
fusion::for_each(val, detail::print_fusion_sequence<Out>(out));
out << ']';
}
// non-stl container
template <typename T_>
static void call_impl2(Out& out, T_ const& val, mpl::false_)
{
call_impl3(out, val, fusion::traits::is_sequence<T_>());
}
// stl container
template <typename T_>
static void call_impl2(Out& out, T_ const& val, mpl::true_)
{
out << '[';
if (!traits::is_empty(val))
{
bool first = true;
typename container_iterator<T_ const>::type iend = traits::end(val);
for (typename container_iterator<T_ const>::type i = traits::begin(val);
!traits::compare(i, iend); traits::next(i))
{
if (!first)
out << ", ";
first = false;
spirit::traits::print_attribute(out, traits::deref(i));
}
}
out << ']';
}
// for variant types
template <typename T_>
static void call_impl(Out& out, T_ const& val, mpl::false_)
{
apply_visitor(detail::print_visitor<Out>(out), val);
}
// for non-variant types
template <typename T_>
static void call_impl(Out& out, T_ const& val, mpl::true_)
{
call_impl2(out, val, is_container<T_>());
}
// main entry point
static void call(Out& out, T const& val)
{
call_impl(out, val, not_is_variant<T>());
}
};
template <typename Out, typename T>
struct print_attribute_debug<Out, boost::optional<T> >
{
static void call(Out& out, boost::optional<T> const& val)
{
if (val)
spirit::traits::print_attribute(out, *val);
else
out << "[empty]";
}
};
///////////////////////////////////////////////////////////////////////////
template <typename Out, typename T>
inline void print_attribute(Out& out, T const& val)
{
print_attribute_debug<Out, T>::call(out, val);
}
template <typename Out>
inline void print_attribute(Out&, unused_type)
{
}
///////////////////////////////////////////////////////////////////////////
// generate debug output for lookahead token (character) stream
namespace detail
{
struct token_printer_debug_for_chars
{
template<typename Out, typename Char>
static void print(Out& o, Char c)
{
using namespace std; // allow for ADL to find the proper iscntrl
if (c == static_cast<Char>('\a'))
o << "\\a";
else if (c == static_cast<Char>('\b'))
o << "\\b";
else if (c == static_cast<Char>('\f'))
o << "\\f";
else if (c == static_cast<Char>('\n'))
o << "\\n";
else if (c == static_cast<Char>('\r'))
o << "\\r";
else if (c == static_cast<Char>('\t'))
o << "\\t";
else if (c == static_cast<Char>('\v'))
o << "\\v";
else if (c >= 0 && c < 127 && iscntrl(c))
o << "\\" << std::oct << static_cast<int>(c);
else
o << static_cast<char>(c);
}
};
// for token types where the comparison with char constants wouldn't work
struct token_printer_debug
{
template<typename Out, typename T>
static void print(Out& o, T const& val)
{
o << val;
}
};
}
template <typename T, typename Enable>
struct token_printer_debug
: mpl::if_<
mpl::and_<
is_convertible<T, char>, is_convertible<char, T> >
, detail::token_printer_debug_for_chars
, detail::token_printer_debug>::type
{};
template <typename Out, typename T>
inline void print_token(Out& out, T const& val)
{
// allow to customize the token printer routine
token_printer_debug<T>::print(out, val);
}
}}}
///////////////////////////////////////////////////////////////////////////////
namespace boost { namespace spirit { namespace result_of
{
template <typename Exposed, typename Transformed, typename Domain>
struct pre_transform
: traits::transform_attribute<Exposed, Transformed, Domain>
{};
}}}
#endif
|