1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
|
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A btree implementation of the STL set and map interfaces. A btree is both
// smaller and faster than STL set/map. The red-black tree implementation of
// STL set/map has an overhead of 3 pointers (left, right and parent) plus the
// node color information for each stored value. So a set<int32> consumes 20
// bytes for each value stored. This btree implementation stores multiple
// values on fixed size nodes (usually 256 bytes) and doesn't store child
// pointers for leaf nodes. The result is that a btree_set<int32> may use much
// less memory per stored value. For the random insertion benchmark in
// btree_test.cc, a btree_set<int32> with node-size of 256 uses 4.9 bytes per
// stored value.
//
// The packing of multiple values on to each node of a btree has another effect
// besides better space utilization: better cache locality due to fewer cache
// lines being accessed. Better cache locality translates into faster
// operations.
//
// CAVEATS
//
// Insertions and deletions on a btree can cause splitting, merging or
// rebalancing of btree nodes. And even without these operations, insertions
// and deletions on a btree will move values around within a node. In both
// cases, the result is that insertions and deletions can invalidate iterators
// pointing to values other than the one being inserted/deleted. This is
// notably different from STL set/map which takes care to not invalidate
// iterators on insert/erase except, of course, for iterators pointing to the
// value being erased. A partial workaround when erasing is available:
// erase() returns an iterator pointing to the item just after the one that was
// erased (or end() if none exists). See also safe_btree.
// PERFORMANCE
//
// btree_bench --benchmarks=. 2>&1 | ./benchmarks.awk
//
// Run on pmattis-warp.nyc (4 X 2200 MHz CPUs); 2010/03/04-15:23:06
// Benchmark STL(ns) B-Tree(ns) @ <size>
// --------------------------------------------------------
// BM_set_int32_insert 1516 608 +59.89% <256> [40.0, 5.2]
// BM_set_int32_lookup 1160 414 +64.31% <256> [40.0, 5.2]
// BM_set_int32_fulllookup 960 410 +57.29% <256> [40.0, 4.4]
// BM_set_int32_delete 1741 528 +69.67% <256> [40.0, 5.2]
// BM_set_int32_queueaddrem 3078 1046 +66.02% <256> [40.0, 5.5]
// BM_set_int32_mixedaddrem 3600 1384 +61.56% <256> [40.0, 5.3]
// BM_set_int32_fifo 227 113 +50.22% <256> [40.0, 4.4]
// BM_set_int32_fwditer 158 26 +83.54% <256> [40.0, 5.2]
// BM_map_int32_insert 1551 636 +58.99% <256> [48.0, 10.5]
// BM_map_int32_lookup 1200 508 +57.67% <256> [48.0, 10.5]
// BM_map_int32_fulllookup 989 487 +50.76% <256> [48.0, 8.8]
// BM_map_int32_delete 1794 628 +64.99% <256> [48.0, 10.5]
// BM_map_int32_queueaddrem 3189 1266 +60.30% <256> [48.0, 11.6]
// BM_map_int32_mixedaddrem 3822 1623 +57.54% <256> [48.0, 10.9]
// BM_map_int32_fifo 151 134 +11.26% <256> [48.0, 8.8]
// BM_map_int32_fwditer 161 32 +80.12% <256> [48.0, 10.5]
// BM_set_int64_insert 1546 636 +58.86% <256> [40.0, 10.5]
// BM_set_int64_lookup 1200 512 +57.33% <256> [40.0, 10.5]
// BM_set_int64_fulllookup 971 487 +49.85% <256> [40.0, 8.8]
// BM_set_int64_delete 1745 616 +64.70% <256> [40.0, 10.5]
// BM_set_int64_queueaddrem 3163 1195 +62.22% <256> [40.0, 11.6]
// BM_set_int64_mixedaddrem 3760 1564 +58.40% <256> [40.0, 10.9]
// BM_set_int64_fifo 146 103 +29.45% <256> [40.0, 8.8]
// BM_set_int64_fwditer 162 31 +80.86% <256> [40.0, 10.5]
// BM_map_int64_insert 1551 720 +53.58% <256> [48.0, 20.7]
// BM_map_int64_lookup 1214 612 +49.59% <256> [48.0, 20.7]
// BM_map_int64_fulllookup 994 592 +40.44% <256> [48.0, 17.2]
// BM_map_int64_delete 1778 764 +57.03% <256> [48.0, 20.7]
// BM_map_int64_queueaddrem 3189 1547 +51.49% <256> [48.0, 20.9]
// BM_map_int64_mixedaddrem 3779 1887 +50.07% <256> [48.0, 21.6]
// BM_map_int64_fifo 147 145 +1.36% <256> [48.0, 17.2]
// BM_map_int64_fwditer 162 41 +74.69% <256> [48.0, 20.7]
// BM_set_string_insert 1989 1966 +1.16% <256> [64.0, 44.5]
// BM_set_string_lookup 1709 1600 +6.38% <256> [64.0, 44.5]
// BM_set_string_fulllookup 1573 1529 +2.80% <256> [64.0, 35.4]
// BM_set_string_delete 2520 1920 +23.81% <256> [64.0, 44.5]
// BM_set_string_queueaddrem 4706 4309 +8.44% <256> [64.0, 48.3]
// BM_set_string_mixedaddrem 5080 4654 +8.39% <256> [64.0, 46.7]
// BM_set_string_fifo 318 512 -61.01% <256> [64.0, 35.4]
// BM_set_string_fwditer 182 93 +48.90% <256> [64.0, 44.5]
// BM_map_string_insert 2600 2227 +14.35% <256> [72.0, 55.8]
// BM_map_string_lookup 2068 1730 +16.34% <256> [72.0, 55.8]
// BM_map_string_fulllookup 1859 1618 +12.96% <256> [72.0, 44.0]
// BM_map_string_delete 3168 2080 +34.34% <256> [72.0, 55.8]
// BM_map_string_queueaddrem 5840 4701 +19.50% <256> [72.0, 59.4]
// BM_map_string_mixedaddrem 6400 5200 +18.75% <256> [72.0, 57.8]
// BM_map_string_fifo 398 596 -49.75% <256> [72.0, 44.0]
// BM_map_string_fwditer 243 113 +53.50% <256> [72.0, 55.8]
#ifndef UTIL_BTREE_BTREE_H__
#define UTIL_BTREE_BTREE_H__
#include <assert.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <type_traits>
#include <new>
#include <ostream>
#include <string>
#include <utility>
#ifndef NDEBUG
#define BTREE_NDEBUG 0
#else
#define BTREE_NDEBUG 1
#endif
namespace btree {
// Inside a btree method, if we just call swap(), it will choose the
// btree::swap method, which we don't want. And we can't say ::swap
// because then MSVC won't pickup any std::swap() implementations. We
// can't just use std::swap() directly because then we don't get the
// specialization for types outside the std namespace. So the solution
// is to have a special swap helper function whose name doesn't
// collide with other swap functions defined by the btree classes.
template <typename T>
inline void btree_swap_helper(T &a, T &b) {
using std::swap;
swap(a, b);
}
// A template helper used to select A or B based on a condition.
template<bool cond, typename A, typename B>
struct if_{
typedef A type;
};
template<typename A, typename B>
struct if_<false, A, B> {
typedef B type;
};
// Types small_ and big_ are promise that sizeof(small_) < sizeof(big_)
typedef char small_;
struct big_ {
char dummy[2];
};
// A compile-time assertion.
template <bool>
struct CompileAssert {
};
#define COMPILE_ASSERT(expr, msg) \
typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
// A helper type used to indicate that a key-compare-to functor has been
// provided. A user can specify a key-compare-to functor by doing:
//
// struct MyStringComparer
// : public util::btree::btree_key_compare_to_tag {
// int operator()(const string &a, const string &b) const {
// return a.compare(b);
// }
// };
//
// Note that the return type is an int and not a bool. There is a
// COMPILE_ASSERT which enforces this return type.
struct btree_key_compare_to_tag {
};
// A helper class that indicates if the Compare parameter is derived from
// btree_key_compare_to_tag.
template <typename Compare>
struct btree_is_key_compare_to
: public std::is_convertible<Compare, btree_key_compare_to_tag> {
};
// A helper class to convert a boolean comparison into a three-way
// "compare-to" comparison that returns a negative value to indicate
// less-than, zero to indicate equality and a positive value to
// indicate greater-than. This helper class is specialized for
// less<string> and greater<string>. The btree_key_compare_to_adapter
// class is provided so that btree users automatically get the more
// efficient compare-to code when using common google string types
// with common comparison functors.
template <typename Compare>
struct btree_key_compare_to_adapter : Compare {
btree_key_compare_to_adapter() { }
btree_key_compare_to_adapter(const Compare &c) : Compare(c) { }
btree_key_compare_to_adapter(const btree_key_compare_to_adapter<Compare> &c)
: Compare(c) {
}
};
template <>
struct btree_key_compare_to_adapter<std::less<std::string> >
: public btree_key_compare_to_tag {
btree_key_compare_to_adapter() {}
btree_key_compare_to_adapter(const std::less<std::string>&) {}
btree_key_compare_to_adapter(
const btree_key_compare_to_adapter<std::less<std::string> >&) {}
int operator()(const std::string &a, const std::string &b) const {
return a.compare(b);
}
};
template <>
struct btree_key_compare_to_adapter<std::greater<std::string> >
: public btree_key_compare_to_tag {
btree_key_compare_to_adapter() {}
btree_key_compare_to_adapter(const std::greater<std::string>&) {}
btree_key_compare_to_adapter(
const btree_key_compare_to_adapter<std::greater<std::string> >&) {}
int operator()(const std::string &a, const std::string &b) const {
return b.compare(a);
}
};
// A helper class that allows a compare-to functor to behave like a plain
// compare functor. This specialization is used when we do not have a
// compare-to functor.
template <typename Key, typename Compare, bool HaveCompareTo>
struct btree_key_comparer {
btree_key_comparer() {}
btree_key_comparer(Compare c) : comp(c) {}
static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
return comp(x, y);
}
bool operator()(const Key &x, const Key &y) const {
return bool_compare(comp, x, y);
}
Compare comp;
};
// A specialization of btree_key_comparer when a compare-to functor is
// present. We need a plain (boolean) comparison in some parts of the btree
// code, such as insert-with-hint.
template <typename Key, typename Compare>
struct btree_key_comparer<Key, Compare, true> {
btree_key_comparer() {}
btree_key_comparer(Compare c) : comp(c) {}
static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
return comp(x, y) < 0;
}
bool operator()(const Key &x, const Key &y) const {
return bool_compare(comp, x, y);
}
Compare comp;
};
// A helper function to compare to keys using the specified compare
// functor. This dispatches to the appropriate btree_key_comparer comparison,
// depending on whether we have a compare-to functor or not (which depends on
// whether Compare is derived from btree_key_compare_to_tag).
template <typename Key, typename Compare>
static bool btree_compare_keys(
const Compare &comp, const Key &x, const Key &y) {
typedef btree_key_comparer<Key, Compare,
btree_is_key_compare_to<Compare>::value> key_comparer;
return key_comparer::bool_compare(comp, x, y);
}
template <typename Key, typename Compare,
typename Alloc, int TargetNodeSize, int ValueSize>
struct btree_common_params {
// If Compare is derived from btree_key_compare_to_tag then use it as the
// key_compare type. Otherwise, use btree_key_compare_to_adapter<> which will
// fall-back to Compare if we don't have an appropriate specialization.
typedef typename if_<
btree_is_key_compare_to<Compare>::value,
Compare, btree_key_compare_to_adapter<Compare> >::type key_compare;
// A type which indicates if we have a key-compare-to functor or a plain old
// key-compare functor.
typedef btree_is_key_compare_to<key_compare> is_key_compare_to;
typedef Alloc allocator_type;
typedef Key key_type;
typedef ssize_t size_type;
typedef ptrdiff_t difference_type;
enum {
kTargetNodeSize = TargetNodeSize,
// Available space for values. This is largest for leaf nodes,
// which has overhead no fewer than two pointers.
kNodeValueSpace = TargetNodeSize - 2 * sizeof(void*),
};
// This is an integral type large enough to hold as many
// ValueSize-values as will fit a node of TargetNodeSize bytes.
typedef typename if_<
(kNodeValueSpace / ValueSize) >= 256,
uint16_t,
uint8_t>::type node_count_type;
};
// A parameters structure for holding the type parameters for a btree_map.
template <typename Key, typename Data, typename Compare,
typename Alloc, int TargetNodeSize>
struct btree_map_params
: public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
sizeof(Key) + sizeof(Data)> {
typedef Data data_type;
typedef Data mapped_type;
typedef std::pair<const Key, data_type> value_type;
typedef std::pair<Key, data_type> mutable_value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
enum {
kValueSize = sizeof(Key) + sizeof(data_type),
};
static const Key& key(const value_type &x) { return x.first; }
static const Key& key(const mutable_value_type &x) { return x.first; }
static void swap(mutable_value_type *a, mutable_value_type *b) {
btree_swap_helper(a->first, b->first);
btree_swap_helper(a->second, b->second);
}
};
// A parameters structure for holding the type parameters for a btree_set.
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize>
struct btree_set_params
: public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
sizeof(Key)> {
typedef std::false_type data_type;
typedef std::false_type mapped_type;
typedef Key value_type;
typedef value_type mutable_value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
enum {
kValueSize = sizeof(Key),
};
static const Key& key(const value_type &x) { return x; }
static void swap(mutable_value_type *a, mutable_value_type *b) {
btree_swap_helper<mutable_value_type>(*a, *b);
}
};
// An adapter class that converts a lower-bound compare into an upper-bound
// compare.
template <typename Key, typename Compare>
struct btree_upper_bound_adapter : public Compare {
btree_upper_bound_adapter(Compare c) : Compare(c) {}
bool operator()(const Key &a, const Key &b) const {
return !static_cast<const Compare&>(*this)(b, a);
}
};
template <typename Key, typename CompareTo>
struct btree_upper_bound_compare_to_adapter : public CompareTo {
btree_upper_bound_compare_to_adapter(CompareTo c) : CompareTo(c) {}
int operator()(const Key &a, const Key &b) const {
return static_cast<const CompareTo&>(*this)(b, a);
}
};
// Dispatch helper class for using linear search with plain compare.
template <typename K, typename N, typename Compare>
struct btree_linear_search_plain_compare {
static int lower_bound(const K &k, const N &n, Compare comp) {
return n.linear_search_plain_compare(k, 0, n.count(), comp);
}
static int upper_bound(const K &k, const N &n, Compare comp) {
typedef btree_upper_bound_adapter<K, Compare> upper_compare;
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// Dispatch helper class for using linear search with compare-to
template <typename K, typename N, typename CompareTo>
struct btree_linear_search_compare_to {
static int lower_bound(const K &k, const N &n, CompareTo comp) {
return n.linear_search_compare_to(k, 0, n.count(), comp);
}
static int upper_bound(const K &k, const N &n, CompareTo comp) {
typedef btree_upper_bound_adapter<K,
btree_key_comparer<K, CompareTo, true> > upper_compare;
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// Dispatch helper class for using binary search with plain compare.
template <typename K, typename N, typename Compare>
struct btree_binary_search_plain_compare {
static int lower_bound(const K &k, const N &n, Compare comp) {
return n.binary_search_plain_compare(k, 0, n.count(), comp);
}
static int upper_bound(const K &k, const N &n, Compare comp) {
typedef btree_upper_bound_adapter<K, Compare> upper_compare;
return n.binary_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// Dispatch helper class for using binary search with compare-to.
template <typename K, typename N, typename CompareTo>
struct btree_binary_search_compare_to {
static int lower_bound(const K &k, const N &n, CompareTo comp) {
return n.binary_search_compare_to(k, 0, n.count(), CompareTo());
}
static int upper_bound(const K &k, const N &n, CompareTo comp) {
typedef btree_upper_bound_adapter<K,
btree_key_comparer<K, CompareTo, true> > upper_compare;
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// A node in the btree holding. The same node type is used for both internal
// and leaf nodes in the btree, though the nodes are allocated in such a way
// that the children array is only valid in internal nodes.
template <typename Params>
class btree_node {
public:
typedef Params params_type;
typedef btree_node<Params> self_type;
typedef typename Params::key_type key_type;
typedef typename Params::data_type data_type;
typedef typename Params::value_type value_type;
typedef typename Params::mutable_value_type mutable_value_type;
typedef typename Params::pointer pointer;
typedef typename Params::const_pointer const_pointer;
typedef typename Params::reference reference;
typedef typename Params::const_reference const_reference;
typedef typename Params::key_compare key_compare;
typedef typename Params::size_type size_type;
typedef typename Params::difference_type difference_type;
// Typedefs for the various types of node searches.
typedef btree_linear_search_plain_compare<
key_type, self_type, key_compare> linear_search_plain_compare_type;
typedef btree_linear_search_compare_to<
key_type, self_type, key_compare> linear_search_compare_to_type;
typedef btree_binary_search_plain_compare<
key_type, self_type, key_compare> binary_search_plain_compare_type;
typedef btree_binary_search_compare_to<
key_type, self_type, key_compare> binary_search_compare_to_type;
// If we have a valid key-compare-to type, use linear_search_compare_to,
// otherwise use linear_search_plain_compare.
typedef typename if_<
Params::is_key_compare_to::value,
linear_search_compare_to_type,
linear_search_plain_compare_type>::type linear_search_type;
// If we have a valid key-compare-to type, use binary_search_compare_to,
// otherwise use binary_search_plain_compare.
typedef typename if_<
Params::is_key_compare_to::value,
binary_search_compare_to_type,
binary_search_plain_compare_type>::type binary_search_type;
// If the key is an integral or floating point type, use linear search which
// is faster than binary search for such types. Might be wise to also
// configure linear search based on node-size.
typedef typename if_<
std::is_integral<key_type>::value ||
std::is_floating_point<key_type>::value,
linear_search_type, binary_search_type>::type search_type;
struct base_fields {
typedef typename Params::node_count_type field_type;
// A boolean indicating whether the node is a leaf or not.
bool leaf;
// The position of the node in the node's parent.
field_type position;
// The maximum number of values the node can hold.
field_type max_count;
// The count of the number of values in the node.
field_type count;
// A pointer to the node's parent.
btree_node *parent;
};
enum {
kValueSize = params_type::kValueSize,
kTargetNodeSize = params_type::kTargetNodeSize,
// Compute how many values we can fit onto a leaf node.
kNodeTargetValues = (kTargetNodeSize - sizeof(base_fields)) / kValueSize,
// We need a minimum of 3 values per internal node in order to perform
// splitting (1 value for the two nodes involved in the split and 1 value
// propagated to the parent as the delimiter for the split).
kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
kExactMatch = 1 << 30,
kMatchMask = kExactMatch - 1,
};
struct leaf_fields : public base_fields {
// The array of values. Only the first count of these values have been
// constructed and are valid.
mutable_value_type values[kNodeValues];
};
struct internal_fields : public leaf_fields {
// The array of child pointers. The keys in children_[i] are all less than
// key(i). The keys in children_[i + 1] are all greater than key(i). There
// are always count + 1 children.
btree_node *children[kNodeValues + 1];
};
struct root_fields : public internal_fields {
btree_node *rightmost;
size_type size;
};
public:
// Getter/setter for whether this is a leaf node or not. This value doesn't
// change after the node is created.
bool leaf() const { return fields_.leaf; }
// Getter for the position of this node in its parent.
int position() const { return fields_.position; }
void set_position(int v) { fields_.position = v; }
// Getter/setter for the number of values stored in this node.
int count() const { return fields_.count; }
void set_count(int v) { fields_.count = v; }
int max_count() const { return fields_.max_count; }
// Getter for the parent of this node.
btree_node* parent() const { return fields_.parent; }
// Getter for whether the node is the root of the tree. The parent of the
// root of the tree is the leftmost node in the tree which is guaranteed to
// be a leaf.
bool is_root() const { return parent()->leaf(); }
void make_root() {
assert(parent()->is_root());
fields_.parent = fields_.parent->parent();
}
// Getter for the rightmost root node field. Only valid on the root node.
btree_node* rightmost() const { return fields_.rightmost; }
btree_node** mutable_rightmost() { return &fields_.rightmost; }
// Getter for the size root node field. Only valid on the root node.
size_type size() const { return fields_.size; }
size_type* mutable_size() { return &fields_.size; }
// Getters for the key/value at position i in the node.
const key_type& key(int i) const {
return params_type::key(fields_.values[i]);
}
reference value(int i) {
return reinterpret_cast<reference>(fields_.values[i]);
}
const_reference value(int i) const {
return reinterpret_cast<const_reference>(fields_.values[i]);
}
mutable_value_type* mutable_value(int i) {
return &fields_.values[i];
}
// Swap value i in this node with value j in node x.
void value_swap(int i, btree_node *x, int j) {
params_type::swap(mutable_value(i), x->mutable_value(j));
}
// Getters/setter for the child at position i in the node.
btree_node* child(int i) const { return fields_.children[i]; }
btree_node** mutable_child(int i) { return &fields_.children[i]; }
void set_child(int i, btree_node *c) {
*mutable_child(i) = c;
c->fields_.parent = this;
c->fields_.position = i;
}
// Returns the position of the first value whose key is not less than k.
template <typename Compare>
int lower_bound(const key_type &k, const Compare &comp) const {
return search_type::lower_bound(k, *this, comp);
}
// Returns the position of the first value whose key is greater than k.
template <typename Compare>
int upper_bound(const key_type &k, const Compare &comp) const {
return search_type::upper_bound(k, *this, comp);
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using plain compare.
template <typename Compare>
int linear_search_plain_compare(
const key_type &k, int s, int e, const Compare &comp) const {
while (s < e) {
if (!btree_compare_keys(comp, key(s), k)) {
break;
}
++s;
}
return s;
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using compare-to.
template <typename Compare>
int linear_search_compare_to(
const key_type &k, int s, int e, const Compare &comp) const {
while (s < e) {
int c = comp(key(s), k);
if (c == 0) {
return s | kExactMatch;
} else if (c > 0) {
break;
}
++s;
}
return s;
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using plain compare.
template <typename Compare>
int binary_search_plain_compare(
const key_type &k, int s, int e, const Compare &comp) const {
while (s != e) {
int mid = (s + e) / 2;
if (btree_compare_keys(comp, key(mid), k)) {
s = mid + 1;
} else {
e = mid;
}
}
return s;
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using compare-to.
template <typename CompareTo>
int binary_search_compare_to(
const key_type &k, int s, int e, const CompareTo &comp) const {
while (s != e) {
int mid = (s + e) / 2;
int c = comp(key(mid), k);
if (c < 0) {
s = mid + 1;
} else if (c > 0) {
e = mid;
} else {
// Need to return the first value whose key is not less than k, which
// requires continuing the binary search. Note that we are guaranteed
// that the result is an exact match because if "key(mid-1) < k" the
// call to binary_search_compare_to() will return "mid".
s = binary_search_compare_to(k, s, mid, comp);
return s | kExactMatch;
}
}
return s;
}
// Inserts the value x at position i, shifting all existing values and
// children at positions >= i to the right by 1.
template<typename V>
void insert_value(int i, V &&x);
// Removes the value at position i, shifting all existing values and children
// at positions > i to the left by 1.
void remove_value(int i);
// Rebalances a node with its right sibling.
void rebalance_right_to_left(btree_node *sibling, int to_move);
void rebalance_left_to_right(btree_node *sibling, int to_move);
// Splits a node, moving a portion of the node's values to its right sibling.
void split(btree_node *sibling, int insert_position);
// Merges a node with its right sibling, moving all of the values and the
// delimiting key in the parent node onto itself.
void merge(btree_node *sibling);
// Swap the contents of "this" and "src".
void swap(btree_node *src);
// Node allocation/deletion routines.
static btree_node* init_leaf(
leaf_fields *f, btree_node *parent, int max_count) {
btree_node *n = reinterpret_cast<btree_node*>(f);
f->leaf = 1;
f->position = 0;
f->max_count = max_count;
f->count = 0;
f->parent = parent;
if (!BTREE_NDEBUG) {
memset(&f->values, 0, max_count * sizeof(value_type));
}
return n;
}
static btree_node* init_internal(internal_fields *f, btree_node *parent) {
btree_node *n = init_leaf(f, parent, kNodeValues);
f->leaf = 0;
if (!BTREE_NDEBUG) {
memset(f->children, 0, sizeof(f->children));
}
return n;
}
static btree_node* init_root(root_fields *f, btree_node *parent) {
btree_node *n = init_internal(f, parent);
f->rightmost = parent;
f->size = parent->count();
return n;
}
void destroy() {
for (int i = 0; i < count(); ++i) {
value_destroy(i);
}
}
private:
void value_init(int i) {
new (&fields_.values[i]) mutable_value_type;
}
void value_init(int i, const value_type &x) {
new (&fields_.values[i]) mutable_value_type(x);
}
template<class V>
void value_init(int i, V&& x) {
new (&fields_.values[i]) mutable_value_type(std::forward<V>(x));
}
void value_destroy(int i) {
fields_.values[i].~mutable_value_type();
}
private:
root_fields fields_;
private:
btree_node(const btree_node&);
void operator=(const btree_node&);
};
template <typename Node, typename Reference, typename Pointer>
struct btree_iterator {
typedef typename Node::key_type key_type;
typedef typename Node::size_type size_type;
typedef typename Node::difference_type difference_type;
typedef typename Node::params_type params_type;
typedef Node node_type;
typedef typename std::remove_const<Node>::type normal_node;
typedef const Node const_node;
typedef typename params_type::value_type value_type;
typedef typename params_type::pointer normal_pointer;
typedef typename params_type::reference normal_reference;
typedef typename params_type::const_pointer const_pointer;
typedef typename params_type::const_reference const_reference;
typedef Pointer pointer;
typedef Reference reference;
typedef std::bidirectional_iterator_tag iterator_category;
typedef btree_iterator<
normal_node, normal_reference, normal_pointer> iterator;
typedef btree_iterator<
const_node, const_reference, const_pointer> const_iterator;
typedef btree_iterator<Node, Reference, Pointer> self_type;
btree_iterator()
: node(NULL),
position(-1) {
}
btree_iterator(Node *n, int p)
: node(n),
position(p) {
}
btree_iterator(const iterator &x)
: node(x.node),
position(x.position) {
}
// Increment/decrement the iterator.
void increment() {
if (node->leaf() && ++position < node->count()) {
return;
}
increment_slow();
}
void increment_by(int count);
void increment_slow();
void decrement() {
if (node->leaf() && --position >= 0) {
return;
}
decrement_slow();
}
void decrement_slow();
bool operator==(const const_iterator &x) const {
return node == x.node && position == x.position;
}
bool operator!=(const const_iterator &x) const {
return node != x.node || position != x.position;
}
// Accessors for the key/value the iterator is pointing at.
const key_type& key() const {
return node->key(position);
}
reference operator*() const {
return node->value(position);
}
pointer operator->() const {
return &node->value(position);
}
self_type& operator++() {
increment();
return *this;
}
self_type& operator--() {
decrement();
return *this;
}
self_type operator++(int) {
self_type tmp = *this;
++*this;
return tmp;
}
self_type operator--(int) {
self_type tmp = *this;
--*this;
return tmp;
}
// The node in the tree the iterator is pointing at.
Node *node;
// The position within the node of the tree the iterator is pointing at.
int position;
};
// Dispatch helper class for using btree::internal_locate with plain compare.
struct btree_internal_locate_plain_compare {
template <typename K, typename T, typename Iter>
static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
return t.internal_locate_plain_compare(k, iter);
}
};
// Dispatch helper class for using btree::internal_locate with compare-to.
struct btree_internal_locate_compare_to {
template <typename K, typename T, typename Iter>
static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
return t.internal_locate_compare_to(k, iter);
}
};
template <typename Params>
class btree : public Params::key_compare {
typedef btree<Params> self_type;
typedef btree_node<Params> node_type;
typedef typename node_type::base_fields base_fields;
typedef typename node_type::leaf_fields leaf_fields;
typedef typename node_type::internal_fields internal_fields;
typedef typename node_type::root_fields root_fields;
typedef typename Params::is_key_compare_to is_key_compare_to;
friend class btree_internal_locate_plain_compare;
friend class btree_internal_locate_compare_to;
typedef typename if_<
is_key_compare_to::value,
btree_internal_locate_compare_to,
btree_internal_locate_plain_compare>::type internal_locate_type;
enum {
kNodeValues = node_type::kNodeValues,
kMinNodeValues = kNodeValues / 2,
kValueSize = node_type::kValueSize,
kExactMatch = node_type::kExactMatch,
kMatchMask = node_type::kMatchMask,
};
// A helper class to get the empty base class optimization for 0-size
// allocators. Base is internal_allocator_type.
// (e.g. empty_base_handle<internal_allocator_type, node_type*>). If Base is
// 0-size, the compiler doesn't have to reserve any space for it and
// sizeof(empty_base_handle) will simply be sizeof(Data). Google [empty base
// class optimization] for more details.
template <typename Base, typename Data>
struct empty_base_handle : public Base {
empty_base_handle(const Base &b, Data *d)
: Base(b),
data(d) {
}
empty_base_handle(empty_base_handle &&other) noexcept
: Base(std::move(other)) {
data = other.data;
other.data = nullptr;
}
empty_base_handle& operator=(empty_base_handle &&other) noexcept {
Base::operator=(std::move(other));
data = other.data;
other.data = nullptr;
return *this;
}
Data *data;
};
struct node_stats {
node_stats(ssize_t l, ssize_t i)
: leaf_nodes(l),
internal_nodes(i) {
}
node_stats& operator+=(const node_stats &x) {
leaf_nodes += x.leaf_nodes;
internal_nodes += x.internal_nodes;
return *this;
}
ssize_t leaf_nodes;
ssize_t internal_nodes;
};
public:
typedef Params params_type;
typedef typename Params::key_type key_type;
typedef typename Params::data_type data_type;
typedef typename Params::mapped_type mapped_type;
typedef typename Params::value_type value_type;
typedef typename Params::key_compare key_compare;
typedef typename Params::pointer pointer;
typedef typename Params::const_pointer const_pointer;
typedef typename Params::reference reference;
typedef typename Params::const_reference const_reference;
typedef typename Params::size_type size_type;
typedef typename Params::difference_type difference_type;
typedef btree_iterator<node_type, reference, pointer> iterator;
typedef typename iterator::const_iterator const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef typename Params::allocator_type allocator_type;
typedef typename allocator_type::template rebind<char>::other
internal_allocator_type;
public:
// Default constructor.
btree(const key_compare &comp, const allocator_type &alloc);
// Copy constructor.
btree(const self_type &x);
// Move constructor.
btree(self_type &&x) noexcept;
// Destructor.
~btree() {
clear();
}
// Iterator routines.
iterator begin() {
return iterator(leftmost(), 0);
}
const_iterator begin() const {
return const_iterator(leftmost(), 0);
}
iterator end() {
return iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
}
const_iterator end() const {
return const_iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
}
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Finds the first element whose key is not less than key.
iterator lower_bound(const key_type &key) {
return internal_end(
internal_lower_bound(key, iterator(root(), 0)));
}
const_iterator lower_bound(const key_type &key) const {
return internal_end(
internal_lower_bound(key, const_iterator(root(), 0)));
}
// Finds the first element whose key is greater than key.
iterator upper_bound(const key_type &key) {
return internal_end(
internal_upper_bound(key, iterator(root(), 0)));
}
const_iterator upper_bound(const key_type &key) const {
return internal_end(
internal_upper_bound(key, const_iterator(root(), 0)));
}
// Finds the range of values which compare equal to key. The first member of
// the returned pair is equal to lower_bound(key). The second member pair of
// the pair is equal to upper_bound(key).
std::pair<iterator,iterator> equal_range(const key_type &key) {
return std::make_pair(lower_bound(key), upper_bound(key));
}
std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
return std::make_pair(lower_bound(key), upper_bound(key));
}
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
std::pair<iterator,bool> insert_unique(const key_type &key, value_type&& value);
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
std::pair<iterator,bool> insert_unique(const key_type &key, const value_type& value);
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
std::pair<iterator,bool> insert_unique(const value_type &v) {
return insert_unique(params_type::key(v), v);
}
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
std::pair<iterator,bool> insert_unique(value_type &&v) {
return insert_unique(params_type::key(v), std::move(v));
}
// Insert with hint. Check to see if the value should be placed immediately
// before position in the tree. If it does, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_unique(v) were made.
iterator insert_unique(iterator position, const value_type &v);
// Insert a range of values into the btree.
template <typename InputIterator>
void insert_unique(InputIterator b, InputIterator e);
// Inserts a value into the btree.
iterator insert_multi(const key_type &key, const value_type &value);
iterator insert_multi(const key_type &key, value_type &&value);
// Inserts a value into the btree.
iterator insert_multi(const value_type &v) {
return insert_multi(params_type::key(v), v);
}
// Insert with hint. Check to see if the value should be placed immediately
// before position in the tree. If it does, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_multi(v) were made.
iterator insert_multi(iterator position, const value_type &v);
// Insert a range of values into the btree.
template <typename InputIterator>
void insert_multi(InputIterator b, InputIterator e);
void assign(const self_type &x);
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
iterator erase(iterator iter);
// Erases range. Returns the number of keys erased.
int erase(iterator begin, iterator end);
// Erases the specified key from the btree. Returns 1 if an element was
// erased and 0 otherwise.
int erase_unique(const key_type &key);
// Erases all of the entries matching the specified key from the
// btree. Returns the number of elements erased.
int erase_multi(const key_type &key);
// Finds the iterator corresponding to a key or returns end() if the key is
// not present.
iterator find_unique(const key_type &key) {
return internal_end(
internal_find_unique(key, iterator(root(), 0)));
}
const_iterator find_unique(const key_type &key) const {
return internal_end(
internal_find_unique(key, const_iterator(root(), 0)));
}
iterator find_multi(const key_type &key) {
return internal_end(
internal_find_multi(key, iterator(root(), 0)));
}
const_iterator find_multi(const key_type &key) const {
return internal_end(
internal_find_multi(key, const_iterator(root(), 0)));
}
// Returns a count of the number of times the key appears in the btree.
size_type count_unique(const key_type &key) const {
const_iterator begin = internal_find_unique(
key, const_iterator(root(), 0));
if (!begin.node) {
// The key doesn't exist in the tree.
return 0;
}
return 1;
}
// Returns a count of the number of times the key appears in the btree.
size_type count_multi(const key_type &key) const {
return distance(lower_bound(key), upper_bound(key));
}
// Clear the btree, deleting all of the values it contains.
void clear();
// Swap the contents of *this and x.
void swap(self_type &x);
// Assign the contents of x to *this.
self_type& operator=(const self_type &x) {
if (&x == this) {
// Don't copy onto ourselves.
return *this;
}
assign(x);
return *this;
}
self_type& operator=(self_type&& x) noexcept {
key_compare::operator=(std::move(x.key_comp()));
root_ = std::move(x.root_);
x.root_.data = nullptr;
return *this;
}
key_compare* mutable_key_comp() {
return this;
}
const key_compare& key_comp() const {
return *this;
}
bool compare_keys(const key_type &x, const key_type &y) const {
return btree_compare_keys(key_comp(), x, y);
}
// Dump the btree to the specified ostream. Requires that operator<< is
// defined for Key and Value.
void dump(std::ostream &os) const {
if (root() != NULL) {
internal_dump(os, root(), 0);
}
}
// Verifies the structure of the btree.
void verify() const;
// Size routines. Note that empty() is slightly faster than doing size()==0.
size_type size() const {
if (empty()) return 0;
if (root()->leaf()) return root()->count();
return root()->size();
}
size_type max_size() const { return std::numeric_limits<size_type>::max(); }
bool empty() const { return root() == NULL; }
// The height of the btree. An empty tree will have height 0.
size_type height() const {
size_type h = 0;
if (root()) {
// Count the length of the chain from the leftmost node up to the
// root. We actually count from the root back around to the level below
// the root, but the calculation is the same because of the circularity
// of that traversal.
const node_type *n = root();
do {
++h;
n = n->parent();
} while (n != root());
}
return h;
}
// The number of internal, leaf and total nodes used by the btree.
size_type leaf_nodes() const {
return internal_stats(root()).leaf_nodes;
}
size_type internal_nodes() const {
return internal_stats(root()).internal_nodes;
}
size_type nodes() const {
node_stats stats = internal_stats(root());
return stats.leaf_nodes + stats.internal_nodes;
}
// The total number of bytes used by the btree.
size_type bytes_used() const {
node_stats stats = internal_stats(root());
if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
return sizeof(*this) +
sizeof(base_fields) + root()->max_count() * sizeof(value_type);
} else {
return sizeof(*this) +
sizeof(root_fields) - sizeof(internal_fields) +
stats.leaf_nodes * sizeof(leaf_fields) +
stats.internal_nodes * sizeof(internal_fields);
}
}
// The average number of bytes used per value stored in the btree.
static double average_bytes_per_value() {
// Returns the number of bytes per value on a leaf node that is 75%
// full. Experimentally, this matches up nicely with the computed number of
// bytes per value in trees that had their values inserted in random order.
return sizeof(leaf_fields) / (kNodeValues * 0.75);
}
// The fullness of the btree. Computed as the number of elements in the btree
// divided by the maximum number of elements a tree with the current number
// of nodes could hold. A value of 1 indicates perfect space
// utilization. Smaller values indicate space wastage.
double fullness() const {
return double(size()) / (nodes() * kNodeValues);
}
// The overhead of the btree structure in bytes per node. Computed as the
// total number of bytes used by the btree minus the number of bytes used for
// storing elements divided by the number of elements.
double overhead() const {
if (empty()) {
return 0.0;
}
return (bytes_used() - size() * kValueSize) / double(size());
}
private:
// Internal accessor routines.
node_type* root() { return root_.data; }
const node_type* root() const { return root_.data; }
node_type** mutable_root() { return &root_.data; }
// The rightmost node is stored in the root node.
node_type* rightmost() {
return (!root() || root()->leaf()) ? root() : root()->rightmost();
}
const node_type* rightmost() const {
return (!root() || root()->leaf()) ? root() : root()->rightmost();
}
node_type** mutable_rightmost() { return root()->mutable_rightmost(); }
// The leftmost node is stored as the parent of the root node.
node_type* leftmost() { return root() ? root()->parent() : NULL; }
const node_type* leftmost() const { return root() ? root()->parent() : NULL; }
// The size of the tree is stored in the root node.
size_type* mutable_size() { return root()->mutable_size(); }
// Allocator routines.
internal_allocator_type* mutable_internal_allocator() {
return static_cast<internal_allocator_type*>(&root_);
}
const internal_allocator_type& internal_allocator() const {
return *static_cast<const internal_allocator_type*>(&root_);
}
// Node creation/deletion routines.
node_type* new_internal_node(node_type *parent) {
internal_fields *p = reinterpret_cast<internal_fields*>(
mutable_internal_allocator()->allocate(sizeof(internal_fields)));
return node_type::init_internal(p, parent);
}
node_type* new_internal_root_node() {
root_fields *p = reinterpret_cast<root_fields*>(
mutable_internal_allocator()->allocate(sizeof(root_fields)));
return node_type::init_root(p, root()->parent());
}
node_type* new_leaf_node(node_type *parent) {
leaf_fields *p = reinterpret_cast<leaf_fields*>(
mutable_internal_allocator()->allocate(sizeof(leaf_fields)));
return node_type::init_leaf(p, parent, kNodeValues);
}
node_type* new_leaf_root_node(int max_count) {
leaf_fields *p = reinterpret_cast<leaf_fields*>(
mutable_internal_allocator()->allocate(
sizeof(base_fields) + max_count * sizeof(value_type)));
return node_type::init_leaf(p, reinterpret_cast<node_type*>(p), max_count);
}
void delete_internal_node(node_type *node) {
node->destroy();
assert(node != root());
mutable_internal_allocator()->deallocate(
reinterpret_cast<char*>(node), sizeof(internal_fields));
}
void delete_internal_root_node() {
root()->destroy();
mutable_internal_allocator()->deallocate(
reinterpret_cast<char*>(root()), sizeof(root_fields));
}
void delete_leaf_node(node_type *node) {
node->destroy();
mutable_internal_allocator()->deallocate(
reinterpret_cast<char*>(node),
sizeof(base_fields) + node->max_count() * sizeof(value_type));
}
// Rebalances or splits the node iter points to.
void rebalance_or_split(iterator *iter);
// Merges the values of left, right and the delimiting key on their parent
// onto left, removing the delimiting key and deleting right.
void merge_nodes(node_type *left, node_type *right);
// Tries to merge node with its left or right sibling, and failing that,
// rebalance with its left or right sibling. Returns true if a merge
// occurred, at which point it is no longer valid to access node. Returns
// false if no merging took place.
bool try_merge_or_rebalance(iterator *iter);
// Tries to shrink the height of the tree by 1.
void try_shrink();
iterator internal_end(iterator iter) {
return iter.node ? iter : end();
}
const_iterator internal_end(const_iterator iter) const {
return iter.node ? iter : end();
}
// Inserts a value into the btree immediately before iter. Requires that
// key(v) <= iter.key() and (--iter).key() <= key(v).
template<class V>
iterator internal_insert(iterator iter, V &&v);
// Returns an iterator pointing to the first value >= the value "iter" is
// pointing at. Note that "iter" might be pointing to an invalid location as
// iter.position == iter.node->count(). This routine simply moves iter up in
// the tree to a valid location.
template <typename IterType>
static IterType internal_last(IterType iter);
// Returns an iterator pointing to the leaf position at which key would
// reside in the tree. We provide 2 versions of internal_locate. The first
// version (internal_locate_plain_compare) always returns 0 for the second
// field of the pair. The second version (internal_locate_compare_to) is for
// the key-compare-to specialization and returns either kExactMatch (if the
// key was found in the tree) or -kExactMatch (if it wasn't) in the second
// field of the pair. The compare_to specialization allows the caller to
// avoid a subsequent comparison to determine if an exact match was made,
// speeding up string keys.
template <typename IterType>
std::pair<IterType, int> internal_locate(
const key_type &key, IterType iter) const;
template <typename IterType>
std::pair<IterType, int> internal_locate_plain_compare(
const key_type &key, IterType iter) const;
template <typename IterType>
std::pair<IterType, int> internal_locate_compare_to(
const key_type &key, IterType iter) const;
// Internal routine which implements lower_bound().
template <typename IterType>
IterType internal_lower_bound(
const key_type &key, IterType iter) const;
// Internal routine which implements upper_bound().
template <typename IterType>
IterType internal_upper_bound(
const key_type &key, IterType iter) const;
// Internal routine which implements find_unique().
template <typename IterType>
IterType internal_find_unique(
const key_type &key, IterType iter) const;
// Internal routine which implements find_multi().
template <typename IterType>
IterType internal_find_multi(
const key_type &key, IterType iter) const;
// Deletes a node and all of its children.
void internal_clear(node_type *node);
// Dumps a node and all of its children to the specified ostream.
void internal_dump(std::ostream &os, const node_type *node, int level) const;
// Verifies the tree structure of node.
int internal_verify(const node_type *node,
const key_type *lo, const key_type *hi) const;
node_stats internal_stats(const node_type *node) const {
if (!node) {
return node_stats(0, 0);
}
if (node->leaf()) {
return node_stats(1, 0);
}
node_stats res(0, 1);
for (int i = 0; i <= node->count(); ++i) {
res += internal_stats(node->child(i));
}
return res;
}
private:
empty_base_handle<internal_allocator_type, node_type> root_;
private:
// A never instantiated helper function that returns big_ if we have a
// key-compare-to functor or if R is bool and small_ otherwise.
template <typename R>
static typename if_<
if_<is_key_compare_to::value,
std::is_same<R, int>,
std::is_same<R, bool> >::type::value,
big_, small_>::type key_compare_checker(R);
// A never instantiated helper function that returns the key comparison
// functor.
static key_compare key_compare_helper();
// Verify that key_compare returns a bool. This is similar to the way
// is_convertible in base/type_traits.h works. Note that key_compare_checker
// is never actually invoked. The compiler will select which
// key_compare_checker() to instantiate and then figure out the size of the
// return type of key_compare_checker() at compile time which we then check
// against the sizeof of big_.
COMPILE_ASSERT(
sizeof(key_compare_checker(key_compare_helper()(key_type(), key_type()))) ==
sizeof(big_),
key_comparison_function_must_return_bool);
// Note: We insist on kTargetValues, which is computed from
// Params::kTargetNodeSize, must fit the base_fields::field_type.
COMPILE_ASSERT(kNodeValues <
(1 << (8 * sizeof(typename base_fields::field_type))),
target_node_size_too_large);
// Test the assumption made in setting kNodeValueSpace.
COMPILE_ASSERT(sizeof(base_fields) >= 2 * sizeof(void*),
node_space_assumption_incorrect);
};
////
// btree_node methods
template <typename P>
template <typename V>
inline void btree_node<P>::insert_value(int i, V &&x) {
assert(i <= count());
value_init(count(), std::forward<V>(x));
for (int j = count(); j > i; --j) {
value_swap(j, this, j - 1);
}
set_count(count() + 1);
if (!leaf()) {
++i;
for (int j = count(); j > i; --j) {
*mutable_child(j) = child(j - 1);
child(j)->set_position(j);
}
*mutable_child(i) = NULL;
}
}
template <typename P>
inline void btree_node<P>::remove_value(int i) {
if (!leaf()) {
assert(child(i + 1)->count() == 0);
for (int j = i + 1; j < count(); ++j) {
*mutable_child(j) = child(j + 1);
child(j)->set_position(j);
}
*mutable_child(count()) = NULL;
}
set_count(count() - 1);
for (; i < count(); ++i) {
value_swap(i, this, i + 1);
}
value_destroy(i);
}
template <typename P>
void btree_node<P>::rebalance_right_to_left(btree_node *src, int to_move) {
assert(parent() == src->parent());
assert(position() + 1 == src->position());
assert(src->count() >= count());
assert(to_move >= 1);
assert(to_move <= src->count());
// Make room in the left node for the new values.
for (int i = 0; i < to_move; ++i) {
value_init(i + count());
}
// Move the delimiting value to the left node and the new delimiting value
// from the right node.
value_swap(count(), parent(), position());
parent()->value_swap(position(), src, to_move - 1);
// Move the values from the right to the left node.
for (int i = 1; i < to_move; ++i) {
value_swap(count() + i, src, i - 1);
}
// Shift the values in the right node to their correct position.
for (int i = to_move; i < src->count(); ++i) {
src->value_swap(i - to_move, src, i);
}
for (int i = 1; i <= to_move; ++i) {
src->value_destroy(src->count() - i);
}
if (!leaf()) {
// Move the child pointers from the right to the left node.
for (int i = 0; i < to_move; ++i) {
set_child(1 + count() + i, src->child(i));
}
for (int i = 0; i <= src->count() - to_move; ++i) {
assert(i + to_move <= src->max_count());
src->set_child(i, src->child(i + to_move));
*src->mutable_child(i + to_move) = NULL;
}
}
// Fixup the counts on the src and dest nodes.
set_count(count() + to_move);
src->set_count(src->count() - to_move);
}
template <typename P>
void btree_node<P>::rebalance_left_to_right(btree_node *dest, int to_move) {
assert(parent() == dest->parent());
assert(position() + 1 == dest->position());
assert(count() >= dest->count());
assert(to_move >= 1);
assert(to_move <= count());
// Make room in the right node for the new values.
for (int i = 0; i < to_move; ++i) {
dest->value_init(i + dest->count());
}
for (int i = dest->count() - 1; i >= 0; --i) {
dest->value_swap(i, dest, i + to_move);
}
// Move the delimiting value to the right node and the new delimiting value
// from the left node.
dest->value_swap(to_move - 1, parent(), position());
parent()->value_swap(position(), this, count() - to_move);
value_destroy(count() - to_move);
// Move the values from the left to the right node.
for (int i = 1; i < to_move; ++i) {
value_swap(count() - to_move + i, dest, i - 1);
value_destroy(count() - to_move + i);
}
if (!leaf()) {
// Move the child pointers from the left to the right node.
for (int i = dest->count(); i >= 0; --i) {
dest->set_child(i + to_move, dest->child(i));
*dest->mutable_child(i) = NULL;
}
for (int i = 1; i <= to_move; ++i) {
dest->set_child(i - 1, child(count() - to_move + i));
*mutable_child(count() - to_move + i) = NULL;
}
}
// Fixup the counts on the src and dest nodes.
set_count(count() - to_move);
dest->set_count(dest->count() + to_move);
}
template <typename P>
void btree_node<P>::split(btree_node *dest, int insert_position) {
assert(dest->count() == 0);
// We bias the split based on the position being inserted. If we're
// inserting at the beginning of the left node then bias the split to put
// more values on the right node. If we're inserting at the end of the
// right node then bias the split to put more values on the left node.
if (insert_position == 0) {
dest->set_count(count() - 1);
} else if (insert_position == max_count()) {
dest->set_count(0);
} else {
dest->set_count(count() / 2);
}
set_count(count() - dest->count());
assert(count() >= 1);
// Move values from the left sibling to the right sibling.
for (int i = 0; i < dest->count(); ++i) {
dest->value_init(i);
value_swap(count() + i, dest, i);
value_destroy(count() + i);
}
// The split key is the largest value in the left sibling.
set_count(count() - 1);
parent()->insert_value(position(), value_type());
value_swap(count(), parent(), position());
value_destroy(count());
parent()->set_child(position() + 1, dest);
if (!leaf()) {
for (int i = 0; i <= dest->count(); ++i) {
assert(child(count() + i + 1) != NULL);
dest->set_child(i, child(count() + i + 1));
*mutable_child(count() + i + 1) = NULL;
}
}
}
template <typename P>
void btree_node<P>::merge(btree_node *src) {
assert(parent() == src->parent());
assert(position() + 1 == src->position());
// Move the delimiting value to the left node.
value_init(count());
value_swap(count(), parent(), position());
// Move the values from the right to the left node.
for (int i = 0; i < src->count(); ++i) {
value_init(1 + count() + i);
value_swap(1 + count() + i, src, i);
src->value_destroy(i);
}
if (!leaf()) {
// Move the child pointers from the right to the left node.
for (int i = 0; i <= src->count(); ++i) {
set_child(1 + count() + i, src->child(i));
*src->mutable_child(i) = NULL;
}
}
// Fixup the counts on the src and dest nodes.
set_count(1 + count() + src->count());
src->set_count(0);
// Remove the value on the parent node.
parent()->remove_value(position());
}
template <typename P>
void btree_node<P>::swap(btree_node *x) {
assert(leaf() == x->leaf());
// Swap the values.
for (int i = count(); i < x->count(); ++i) {
value_init(i);
}
for (int i = x->count(); i < count(); ++i) {
x->value_init(i);
}
int n = std::max(count(), x->count());
for (int i = 0; i < n; ++i) {
value_swap(i, x, i);
}
for (int i = count(); i < x->count(); ++i) {
x->value_destroy(i);
}
for (int i = x->count(); i < count(); ++i) {
value_destroy(i);
}
if (!leaf()) {
// Swap the child pointers.
for (int i = 0; i <= n; ++i) {
btree_swap_helper(*mutable_child(i), *x->mutable_child(i));
}
for (int i = 0; i <= count(); ++i) {
x->child(i)->fields_.parent = x;
}
for (int i = 0; i <= x->count(); ++i) {
child(i)->fields_.parent = this;
}
}
// Swap the counts.
btree_swap_helper(fields_.count, x->fields_.count);
}
////
// btree_iterator methods
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_slow() {
if (node->leaf()) {
assert(position >= node->count());
self_type save(*this);
while (position == node->count() && !node->is_root()) {
assert(node->parent()->child(node->position()) == node);
position = node->position();
node = node->parent();
}
if (position == node->count()) {
*this = save;
}
} else {
assert(position < node->count());
node = node->child(position + 1);
while (!node->leaf()) {
node = node->child(0);
}
position = 0;
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_by(int count) {
while (count > 0) {
if (node->leaf()) {
int rest = node->count() - position;
position += std::min(rest, count);
count = count - rest;
if (position < node->count()) {
return;
}
} else {
--count;
}
increment_slow();
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::decrement_slow() {
if (node->leaf()) {
assert(position <= -1);
self_type save(*this);
while (position < 0 && !node->is_root()) {
assert(node->parent()->child(node->position()) == node);
position = node->position() - 1;
node = node->parent();
}
if (position < 0) {
*this = save;
}
} else {
assert(position >= 0);
node = node->child(position);
while (!node->leaf()) {
node = node->child(node->count());
}
position = node->count() - 1;
}
}
////
// btree methods
template <typename P>
btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
: key_compare(comp),
root_(alloc, NULL) {
}
template <typename P>
btree<P>::btree(const self_type &x)
: key_compare(x.key_comp()),
root_(x.internal_allocator(), NULL) {
assign(x);
}
template <typename P>
btree<P>::btree(self_type &&x) noexcept
: key_compare(std::move(x.key_comp())),
root_(std::move(x.root_)) {
x.root_.data = nullptr;
}
template <typename P>
std::pair<typename btree<P>::iterator, bool>
btree<P>::insert_unique(const key_type &key, value_type&& value) {
if (empty()) {
*mutable_root() = new_leaf_root_node(1);
}
std::pair<iterator, int> res = internal_locate(key, iterator(root(), 0));
iterator &iter = res.first;
if (res.second == kExactMatch) {
// The key already exists in the tree, do nothing.
return std::make_pair(internal_last(iter), false);
} else if (!res.second) {
iterator last = internal_last(iter);
if (last.node && !compare_keys(key, last.key())) {
// The key already exists in the tree, do nothing.
return std::make_pair(last, false);
}
}
return std::make_pair(internal_insert(iter, std::move(value)), true);
}
template <typename P>
std::pair<typename btree<P>::iterator, bool>
btree<P>::insert_unique(const key_type &key, const value_type& value) {
if (empty()) {
*mutable_root() = new_leaf_root_node(1);
}
std::pair<iterator, int> res = internal_locate(key, iterator(root(), 0));
iterator &iter = res.first;
if (res.second == kExactMatch) {
// The key already exists in the tree, do nothing.
return std::make_pair(internal_last(iter), false);
} else if (!res.second) {
iterator last = internal_last(iter);
if (last.node && !compare_keys(key, last.key())) {
// The key already exists in the tree, do nothing.
return std::make_pair(last, false);
}
}
return std::make_pair(internal_insert(iter, value), true);
}
template <typename P>
inline typename btree<P>::iterator
btree<P>::insert_unique(iterator position, const value_type &v) {
if (!empty()) {
const key_type &key = params_type::key(v);
if (position == end() || compare_keys(key, position.key())) {
iterator prev = position;
if (position == begin() || compare_keys((--prev).key(), key)) {
// prev.key() < key < position.key()
return internal_insert(position, v);
}
} else if (compare_keys(position.key(), key)) {
iterator next = position;
++next;
if (next == end() || compare_keys(key, next.key())) {
// position.key() < key < next.key()
return internal_insert(next, v);
}
} else {
// position.key() == key
return position;
}
}
return insert_unique(v).first;
}
template <typename P> template <typename InputIterator>
void btree<P>::insert_unique(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_unique(end(), *b);
}
}
template <typename P>
typename btree<P>::iterator
btree<P>::insert_multi(const key_type &key, value_type &&value) {
if (empty()) {
*mutable_root() = new_leaf_root_node(1);
}
iterator iter = internal_upper_bound(key, iterator(root(), 0));
if (!iter.node) {
iter = end();
}
return internal_insert(iter, std::move(value));
}
template <typename P>
typename btree<P>::iterator
btree<P>::insert_multi(const key_type &key, const value_type &value) {
if (empty()) {
*mutable_root() = new_leaf_root_node(1);
}
iterator iter = internal_upper_bound(key, iterator(root(), 0));
if (!iter.node) {
iter = end();
}
return internal_insert(iter, value);
}
template <typename P>
typename btree<P>::iterator
btree<P>::insert_multi(iterator position, const value_type &v) {
if (!empty()) {
const key_type &key = params_type::key(v);
if (position == end() || !compare_keys(position.key(), key)) {
iterator prev = position;
if (position == begin() || !compare_keys(key, (--prev).key())) {
// prev.key() <= key <= position.key()
return internal_insert(position, v);
}
} else {
iterator next = position;
++next;
if (next == end() || !compare_keys(next.key(), key)) {
// position.key() < key <= next.key()
return internal_insert(next, v);
}
}
}
return insert_multi(v);
}
template <typename P> template <typename InputIterator>
void btree<P>::insert_multi(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_multi(end(), *b);
}
}
template <typename P>
void btree<P>::assign(const self_type &x) {
clear();
*mutable_key_comp() = x.key_comp();
*mutable_internal_allocator() = x.internal_allocator();
// Assignment can avoid key comparisons because we know the order of the
// values is the same order we'll store them in.
for (const_iterator iter = x.begin(); iter != x.end(); ++iter) {
if (empty()) {
insert_multi(*iter);
} else {
// If the btree is not empty, we can just insert the new value at the end
// of the tree!
internal_insert(end(), *iter);
}
}
}
template <typename P>
typename btree<P>::iterator btree<P>::erase(iterator iter) {
bool internal_delete = false;
if (!iter.node->leaf()) {
// Deletion of a value on an internal node. Swap the key with the largest
// value of our left child. This is easy, we just decrement iter.
iterator tmp_iter(iter--);
assert(iter.node->leaf());
assert(!compare_keys(tmp_iter.key(), iter.key()));
iter.node->value_swap(iter.position, tmp_iter.node, tmp_iter.position);
internal_delete = true;
--*mutable_size();
} else if (!root()->leaf()) {
--*mutable_size();
}
// Delete the key from the leaf.
iter.node->remove_value(iter.position);
// We want to return the next value after the one we just erased. If we
// erased from an internal node (internal_delete == true), then the next
// value is ++(++iter). If we erased from a leaf node (internal_delete ==
// false) then the next value is ++iter. Note that ++iter may point to an
// internal node and the value in the internal node may move to a leaf node
// (iter.node) when rebalancing is performed at the leaf level.
// Merge/rebalance as we walk back up the tree.
iterator res(iter);
for (;;) {
if (iter.node == root()) {
try_shrink();
if (empty()) {
return end();
}
break;
}
if (iter.node->count() >= kMinNodeValues) {
break;
}
bool merged = try_merge_or_rebalance(&iter);
if (iter.node->leaf()) {
res = iter;
}
if (!merged) {
break;
}
iter.node = iter.node->parent();
}
// Adjust our return value. If we're pointing at the end of a node, advance
// the iterator.
if (res.position == res.node->count()) {
res.position = res.node->count() - 1;
++res;
}
// If we erased from an internal node, advance the iterator.
if (internal_delete) {
++res;
}
return res;
}
template <typename P>
int btree<P>::erase(iterator begin, iterator end) {
int count = distance(begin, end);
for (int i = 0; i < count; i++) {
begin = erase(begin);
}
return count;
}
template <typename P>
int btree<P>::erase_unique(const key_type &key) {
iterator iter = internal_find_unique(key, iterator(root(), 0));
if (!iter.node) {
// The key doesn't exist in the tree, return nothing done.
return 0;
}
erase(iter);
return 1;
}
template <typename P>
int btree<P>::erase_multi(const key_type &key) {
iterator begin = internal_lower_bound(key, iterator(root(), 0));
if (!begin.node) {
// The key doesn't exist in the tree, return nothing done.
return 0;
}
// Delete all of the keys between begin and upper_bound(key).
iterator end = internal_end(
internal_upper_bound(key, iterator(root(), 0)));
return erase(begin, end);
}
template <typename P>
void btree<P>::clear() {
if (root() != NULL) {
internal_clear(root());
}
*mutable_root() = NULL;
}
template <typename P>
void btree<P>::swap(self_type &x) {
std::swap(static_cast<key_compare&>(*this), static_cast<key_compare&>(x));
std::swap(root_, x.root_);
}
template <typename P>
void btree<P>::verify() const {
if (root() != NULL) {
assert(size() == internal_verify(root(), NULL, NULL));
assert(leftmost() == (++const_iterator(root(), -1)).node);
assert(rightmost() == (--const_iterator(root(), root()->count())).node);
assert(leftmost()->leaf());
assert(rightmost()->leaf());
} else {
assert(size() == 0);
assert(leftmost() == NULL);
assert(rightmost() == NULL);
}
}
template <typename P>
void btree<P>::rebalance_or_split(iterator *iter) {
node_type *&node = iter->node;
int &insert_position = iter->position;
assert(node->count() == node->max_count());
// First try to make room on the node by rebalancing.
node_type *parent = node->parent();
if (node != root()) {
if (node->position() > 0) {
// Try rebalancing with our left sibling.
node_type *left = parent->child(node->position() - 1);
if (left->count() < left->max_count()) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the end of the right node then we bias rebalancing to
// fill up the left node.
int to_move = (left->max_count() - left->count()) /
(1 + (insert_position < left->max_count()));
to_move = std::max(1, to_move);
if (((insert_position - to_move) >= 0) ||
((left->count() + to_move) < left->max_count())) {
left->rebalance_right_to_left(node, to_move);
assert(node->max_count() - node->count() == to_move);
insert_position = insert_position - to_move;
if (insert_position < 0) {
insert_position = insert_position + left->count() + 1;
node = left;
}
assert(node->count() < node->max_count());
return;
}
}
}
if (node->position() < parent->count()) {
// Try rebalancing with our right sibling.
node_type *right = parent->child(node->position() + 1);
if (right->count() < right->max_count()) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the beginning of the left node then we bias rebalancing
// to fill up the right node.
int to_move = (right->max_count() - right->count()) /
(1 + (insert_position > 0));
to_move = std::max(1, to_move);
if ((insert_position <= (node->count() - to_move)) ||
((right->count() + to_move) < right->max_count())) {
node->rebalance_left_to_right(right, to_move);
if (insert_position > node->count()) {
insert_position = insert_position - node->count() - 1;
node = right;
}
assert(node->count() < node->max_count());
return;
}
}
}
// Rebalancing failed, make sure there is room on the parent node for a new
// value.
if (parent->count() == parent->max_count()) {
iterator parent_iter(node->parent(), node->position());
rebalance_or_split(&parent_iter);
}
} else {
// Rebalancing not possible because this is the root node.
if (root()->leaf()) {
// The root node is currently a leaf node: create a new root node and set
// the current root node as the child of the new root.
parent = new_internal_root_node();
parent->set_child(0, root());
*mutable_root() = parent;
assert(*mutable_rightmost() == parent->child(0));
} else {
// The root node is an internal node. We do not want to create a new root
// node because the root node is special and holds the size of the tree
// and a pointer to the rightmost node. So we create a new internal node
// and move all of the items on the current root into the new node.
parent = new_internal_node(parent);
parent->set_child(0, parent);
parent->swap(root());
node = parent;
}
}
// Split the node.
node_type *split_node;
if (node->leaf()) {
split_node = new_leaf_node(parent);
node->split(split_node, insert_position);
if (rightmost() == node) {
*mutable_rightmost() = split_node;
}
} else {
split_node = new_internal_node(parent);
node->split(split_node, insert_position);
}
if (insert_position > node->count()) {
insert_position = insert_position - node->count() - 1;
node = split_node;
}
}
template <typename P>
void btree<P>::merge_nodes(node_type *left, node_type *right) {
left->merge(right);
if (right->leaf()) {
if (rightmost() == right) {
*mutable_rightmost() = left;
}
delete_leaf_node(right);
} else {
delete_internal_node(right);
}
}
template <typename P>
bool btree<P>::try_merge_or_rebalance(iterator *iter) {
node_type *parent = iter->node->parent();
if (iter->node->position() > 0) {
// Try merging with our left sibling.
node_type *left = parent->child(iter->node->position() - 1);
if ((1 + left->count() + iter->node->count()) <= left->max_count()) {
iter->position += 1 + left->count();
merge_nodes(left, iter->node);
iter->node = left;
return true;
}
}
if (iter->node->position() < parent->count()) {
// Try merging with our right sibling.
node_type *right = parent->child(iter->node->position() + 1);
if ((1 + iter->node->count() + right->count()) <= right->max_count()) {
merge_nodes(iter->node, right);
return true;
}
// Try rebalancing with our right sibling. We don't perform rebalancing if
// we deleted the first element from iter->node and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the front of the tree.
if ((right->count() > kMinNodeValues) &&
((iter->node->count() == 0) ||
(iter->position > 0))) {
int to_move = (right->count() - iter->node->count()) / 2;
to_move = std::min(to_move, right->count() - 1);
iter->node->rebalance_right_to_left(right, to_move);
return false;
}
}
if (iter->node->position() > 0) {
// Try rebalancing with our left sibling. We don't perform rebalancing if
// we deleted the last element from iter->node and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the back of the tree.
node_type *left = parent->child(iter->node->position() - 1);
if ((left->count() > kMinNodeValues) &&
((iter->node->count() == 0) ||
(iter->position < iter->node->count()))) {
int to_move = (left->count() - iter->node->count()) / 2;
to_move = std::min(to_move, left->count() - 1);
left->rebalance_left_to_right(iter->node, to_move);
iter->position += to_move;
return false;
}
}
return false;
}
template <typename P>
void btree<P>::try_shrink() {
if (root()->count() > 0) {
return;
}
// Deleted the last item on the root node, shrink the height of the tree.
if (root()->leaf()) {
assert(size() == 0);
delete_leaf_node(root());
*mutable_root() = NULL;
} else {
node_type *child = root()->child(0);
if (child->leaf()) {
// The child is a leaf node so simply make it the root node in the tree.
child->make_root();
delete_internal_root_node();
*mutable_root() = child;
} else {
// The child is an internal node. We want to keep the existing root node
// so we move all of the values from the child node into the existing
// (empty) root node.
child->swap(root());
delete_internal_node(child);
}
}
}
template <typename P> template <typename IterType>
inline IterType btree<P>::internal_last(IterType iter) {
while (iter.node && iter.position == iter.node->count()) {
iter.position = iter.node->position();
iter.node = iter.node->parent();
if (iter.node->leaf()) {
iter.node = NULL;
}
}
return iter;
}
template <typename P>
template <typename V>
inline typename btree<P>::iterator
btree<P>::internal_insert(iterator iter, V &&v) {
if (!iter.node->leaf()) {
// We can't insert on an internal node. Instead, we'll insert after the
// previous value which is guaranteed to be on a leaf node.
--iter;
++iter.position;
}
if (iter.node->count() == iter.node->max_count()) {
// Make room in the leaf for the new item.
if (iter.node->max_count() < kNodeValues) {
// Insertion into the root where the root is smaller that the full node
// size. Simply grow the size of the root node.
assert(iter.node == root());
iter.node = new_leaf_root_node(
std::min<int>(kNodeValues, 2 * iter.node->max_count()));
iter.node->swap(root());
delete_leaf_node(root());
*mutable_root() = iter.node;
} else {
rebalance_or_split(&iter);
++*mutable_size();
}
} else if (!root()->leaf()) {
++*mutable_size();
}
iter.node->insert_value(iter.position, std::forward<V>(v));
return iter;
}
template <typename P> template <typename IterType>
inline std::pair<IterType, int> btree<P>::internal_locate(
const key_type &key, IterType iter) const {
return internal_locate_type::dispatch(key, *this, iter);
}
template <typename P> template <typename IterType>
inline std::pair<IterType, int> btree<P>::internal_locate_plain_compare(
const key_type &key, IterType iter) const {
for (;;) {
iter.position = iter.node->lower_bound(key, key_comp());
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
return std::make_pair(iter, 0);
}
template <typename P> template <typename IterType>
inline std::pair<IterType, int> btree<P>::internal_locate_compare_to(
const key_type &key, IterType iter) const {
for (;;) {
int res = iter.node->lower_bound(key, key_comp());
iter.position = res & kMatchMask;
if (res & kExactMatch) {
return std::make_pair(iter, static_cast<int>(kExactMatch));
}
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
return std::make_pair(iter, -kExactMatch);
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_lower_bound(
const key_type &key, IterType iter) const {
if (iter.node) {
for (;;) {
iter.position =
iter.node->lower_bound(key, key_comp()) & kMatchMask;
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
iter = internal_last(iter);
}
return iter;
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_upper_bound(
const key_type &key, IterType iter) const {
if (iter.node) {
for (;;) {
iter.position = iter.node->upper_bound(key, key_comp());
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
iter = internal_last(iter);
}
return iter;
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_find_unique(
const key_type &key, IterType iter) const {
if (iter.node) {
std::pair<IterType, int> res = internal_locate(key, iter);
if (res.second == kExactMatch) {
return res.first;
}
if (!res.second) {
iter = internal_last(res.first);
if (iter.node && !compare_keys(key, iter.key())) {
return iter;
}
}
}
return IterType(NULL, 0);
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_find_multi(
const key_type &key, IterType iter) const {
if (iter.node) {
iter = internal_lower_bound(key, iter);
if (iter.node) {
iter = internal_last(iter);
if (iter.node && !compare_keys(key, iter.key())) {
return iter;
}
}
}
return IterType(NULL, 0);
}
template <typename P>
void btree<P>::internal_clear(node_type *node) {
if (!node->leaf()) {
for (int i = 0; i <= node->count(); ++i) {
internal_clear(node->child(i));
}
if (node == root()) {
delete_internal_root_node();
} else {
delete_internal_node(node);
}
} else {
delete_leaf_node(node);
}
}
template <typename P>
void btree<P>::internal_dump(
std::ostream &os, const node_type *node, int level) const {
for (int i = 0; i < node->count(); ++i) {
if (!node->leaf()) {
internal_dump(os, node->child(i), level + 1);
}
for (int j = 0; j < level; ++j) {
os << " ";
}
os << node->key(i) << " [" << level << "]\n";
}
if (!node->leaf()) {
internal_dump(os, node->child(node->count()), level + 1);
}
}
template <typename P>
int btree<P>::internal_verify(
const node_type *node, const key_type *lo, const key_type *hi) const {
assert(node->count() > 0);
assert(node->count() <= node->max_count());
if (lo) {
assert(!compare_keys(node->key(0), *lo));
}
if (hi) {
assert(!compare_keys(*hi, node->key(node->count() - 1)));
}
for (int i = 1; i < node->count(); ++i) {
assert(!compare_keys(node->key(i), node->key(i - 1)));
}
int count = node->count();
if (!node->leaf()) {
for (int i = 0; i <= node->count(); ++i) {
assert(node->child(i) != NULL);
assert(node->child(i)->parent() == node);
assert(node->child(i)->position() == i);
count += internal_verify(
node->child(i),
(i == 0) ? lo : &node->key(i - 1),
(i == node->count()) ? hi : &node->key(i));
}
}
return count;
}
} // namespace btree
#endif // UTIL_BTREE_BTREE_H__
|