1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
.\"
.\" Copyright (c) 2007-2018 Osamu Gotoh all rights reserved.
.\"
.TH spaln 1 "2018-09-06" \" -*- nroff -*-
.SH NAME
spaln \- mapping and alignment of cDNA/protein
sequences onto genomic sequence or rapid homology search
against protein sequence database and (semi)global alignment
.SH SYNOPSIS
spaln -WGenome.bk[n|p] -K[D|P] [W_Options] Genome.mfa(.gz)
.br
spaln -WProsDb.bka -KA [W_Options] ProteinSeqenceDB.faa(.gz)
.br
spaln [-Q[0|1|2|3]] [R_options] Genome_segment [cDNA|protein]_queries
.br
spaln -Q[4|5|6|7] -dGenome [R_options] [cDNA|protein]_queries
.br
spaln -Q[4|5|6|7] -aProsDb [R_options] Genomic_segment
.br
spaln -Q[4|5|6|7] -aProsDb [R_options] protein_queries
.br
spaln -Q[4|5|6|7] [R_options] Genome.mfa [cDNA|protein]_queries
.br
spaln -Q[4|5|6|7] [R_options] ProsDb.faa protein_queries
.SH DESCRIPTION
\fBspaln\fR is a stand-alone program that maps and aligns a set
of cDNA/protein sequences onto a genomic sequence.
From version 1.4, \fBspaln\fR supports a combination of protein
sequence database and a given genomic segment. From version 2.2,
it also supports rapid similarity search of protein sequences
against a protein sequence database followd by ordinary alignment.
\fBSpaln\fR runs with relatively small internal memory, making it feasible
to search a whole mammalian genome in a single job on a
conventional computer.
.SH EXAMPLES
.TP
.B spaln -Wddignm.bkn -KD -Xk10 -Xb8192 ddignm.mfa
Make the block index table 'ddignm.bkn' of the genomic
sequence 'ddignm.mfa' in multi-fasta format with
the word size of 10 nucleotides and the block size of 8192.
.TP
.B spaln -O1 'chr1.fa 10001 40000 <' cdna.fa
Align the cDNA sequence 'cdna.fa' onto the genomic segment of 'chr1.fa'
within the range from the 10001-th to the 40000-th
nucleotide of the complementary strand in the semi-global mode.
.TP
.B spaln -Q7 -LS -t10 -dddignm ddicdna.mfa > ddi.exon
Report the gene structures corresponding to individual
cDNAs in 'ddicdna.mfa'. The local alignment mode is used and the
results are written in 'ddi.exon' in the exon-oriented format.
The computation proceeds with 10 threads in parallel.
.TP
.B spaln -Q7 -O5 -XG1M -yX -TMus -ommu.intron -dmmugnm 'ratcdna.mfa (1 20)'
Cross-species comparison between the genome 'mmugnm' and the cDNAs
in 'ratcdna.mfa' from the first to the 20-th entries.
The maximal expected gene size is reset to 1 Mbp.
The outputs go to 'mmu.intron' in the intron-oriented format. The
tetrapod-specific parameter set is used.
.TP
.B spaln -Q7 -O0 -Tarabthal -aSwiss -oyour_genes.gff3 your_genomic_segment
A set of ORFs in the genomic segment are translated and rapidly searched
against the protein database, and then the best-hit sequence is used as
the template of the spliced alignment to infer the organization of the gene
located in the relevant genomic region. The output is shown in Gff3 gene format.
The dicot-specific parameter set is used.
.TP
.B spaln -Q4 -O0 -aSwiss -M4 -t10 aa_queries > output
Find up to four SwissProt sequences most similar to each query sequence,
and report global alignment statistics. To show alignment themselves,
use -O1 option in stead of -O0.
The computation proceeds with 10 threads in parallel.
.SH OPTIONS
Conventions: #: number; $: string; default values in ()
.br
(default for DNA, with -yX option, default for protein)
.SH "FORMATING OPTIONS"
.TP
.B -K$
Format the genomic sequence for DNA ($=D) or protein ($=P) queries, or
format the protein database sequences ($=A) for rapid search of template.
.TP
.B -Xk#
Word size (11 for DNA, 5 for protein)
.TP
.B -Xb#
Block size (4096)
.TP
.B -XG#
Maximum gene size (262144)
.TP
.B -Xa#
Abundance factor (10)
.TP
.B -Xs#
Shifts between adjacent seeds (k)
.SH "RUN TIME OPTIONS"
.TP
.B -C#
NCBI transl_table number indicating the genetic code (1)
.TP
.B -H#
Minimum alignment score for report (35)
.TP
.B -LS
Smith-Waterman-type local alignment
.TP
.B -M[#]
Multiple loci (0)
.RS
#=empty: Multiple loci maximally up to 4
.br
#=0: Single locus
.br
#=1: Re-search unaligned parts
.br
#>1: Multiple loci maximally up to #
.RE
.TP
.B -O[#]
Output format (4)
.RS
#=0: GFF3 format (gene) in genome vs [cDNA|protein] mode
.br
#=0: Alignment statistics in protein vs protein mode
.br
#=1: Alignment
.br
#=2: GFF3 format (match)
.br
#=3: Bed format
.br
#=4: Exon-oriented format similar to output of megablast -D 3
.br
#=5: Intron-oriented output
.br
#=6: Concatenated exon sequence
.br
#=7: Translated amino-acid sequence
.br
#=8: Mapping (block) information only. Use with -Q4
.br
#=12: Output the same information as -O4 in binary formats
.RE
.TP
.B -Q[#]
Select algorithm (3)
.RS
0<=#<=3: Genomic segment in the fasta format given by the first
argument vs. cdna/protein given by the second argument
.br
4<=#<=7: Genome mapping and alignment
.br
#=0,4: DP procedure without HSP search
.br
#=1-3,5-7: Recursive HSP searches up to the level of (# % 4)
.RE
.TP
.B -R$
Read block index table from the file $
.TP
.B -S[#]
Specify the orientation of query (0)
.RS
0: depend on the query annotation
.br
1: forward direction only
.br
2: reverse direction only
.br
3: both directions;
.RE
.TP
.B -T$
Specify the species (in combination with the -yS option for cDNA query)
.TP
.B -U
Map/align without splicing
.TP
.B -V#
Minimum space to induce the Hirschberg's algorithm (16M)
.TP
.B -W$
Write block index table to file $
.TP
.B -i[a|p]
Paired-end reads as the queries from a single or two files
.RS
-ia: 5' and 3' matching pairs must appear alternatively in a file
.br
-ip: 5' and 3' matching pairs must appear in the same order in the two files
.RE
.TP
.B -o$
Destination of output file (stdout)
.TP
.B -pa
Suppress trimming of terminal polyA or polyT sequence
.TP
.B -pq
Suppress some outputs to stderr
.TP
.B -pw
Report the result irrespective of the alignment score
.TP
.B -u#
Gap-extension penalty (3, 2, 2)
.TP
.B -v#
Gap-opening penalty (8, 6, 9)
.TP
.B -xB$
Bit pattern of the seeds used for HSP search at level 1
.TP
.B -xb$
Bit pattern of the seeds used for HSP search at level 3
.TP
.B -ya#
Dinucleotide pairs at the ends of an intron (0)
.RS
0: canonical only (GT..AG, GC..AG, AT..AC)
.br
1: relaxed to (GT..AG, GC..AG, AT..AN)
.br
2: #=1 + allow 1 mismatch from GT..AG
.br
3: any;
.RE
.TP
.B -yi#
Intron penalty (11, 8, 11)
.TP
.B -yj#
Incline of long gap penalty (0.6)
.TP
.B -yk#
Flex point where the incline of gap penalty changes (7)
.TP
.B -yl#
Double affine gap penalty if #=3; affine penalty otherwise
.TP
.B -ym#
Score for a nucleotide match (2, 2)
.TP
.B -yn#
Penalty for a nucleotide mismatch (6, 2)
.TP
.B -yo#
Penalty for in-frame termination codon (100)
.TP
.B -yp#
PAM level used in the alignment (third) phase (150)
.TP
.B -yq#
PAM level used in the second phase (50)
.TP
.B -yx#
Penalty for a frame shift (100)
.TP
.B -yy#
Relative contribution of splicing signal (8)
.TP
.B -yz#
Relative contribution of coding potential (2)
.TP
.B -yA#
Relative contribution of the translational initiation or termination signal (8)
.TP
.B -yB#
Relative contribution of branch point signal (0)
.TP
.B -yE#
Minimum exon length (2)
.TP
.TP
.B -yI$
Intron distribution parameters
.TP
.TP
.B -yJ#
Relative contribution of the bonus given to a conserved intron position
.TP
.B -yL#
The minimum intron length (20)
.TP
.B -yS#
Percent contribution of the species-specific splice signal. if #=0, only the ubiquitous signal given to the dinucleotide pair at the ends of an intron is used. By default #=0 for DNA and #=100 for protein queries. -yX option automatically sets #=100 for DNA and #=30 for protein.
.B -yS
For cDNA queries, use species-specific exon-intron boundary signals. For protein queries, invoke 'salvage' procedure in phase 1
.TP
.B -yX
For a DNA query, this option sets parameter values for cross-species comparison. Conversely, this option specifies an intra-species mode for a protein query.
.TP
.B -yY#
Relative contribution of length-dependent part of intron penalty (8)
.TP
.B -yZ#
Relative contribution of oligomer composition within an intron (0)
.sp
.SH REFERENCES
(1) "A Space-Efficient and Accurate Method for Mapping and Aligning
cDNA Sequences onto Genomic Sequence",
Osamu Gotoh, Nucleic Acid Res., 36 (8), 2630-2638 (2008).
.br
(2) "Direct Mapping and Alignment of Protein Sequences onto Genomic Sequence",
Osamu Gotoh, Bioinformatics, 24 (21) 2438-2444 (2008).
.br
(3) "Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features", Iwata, H. and Gotoh, O.", Nucleic Acids Res., 40 (20) e161 (2012).
.SH AUTHOR
Osamu Gotoh <o.gotoh@aist.go.jp>
|