File: autolearn.t

package info (click to toggle)
spamassassin 3.4.2-1%2Bdeb10u3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 13,004 kB
  • sloc: perl: 57,283; ansic: 3,398; sh: 637; sql: 211; makefile: 200; python: 17
file content (51 lines) | stat: -rwxr-xr-x 1,075 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/perl

use lib '.'; use lib 't';
use SATest; sa_t_init("autolearn");

use constant HAS_DB_FILE => eval { require DB_File; };

use Test::More;

plan skip_all => 'Need DB_File for this test' unless HAS_DB_FILE;
plan tests => 2;

# ---------------------------------------------------------------------------

%patterns = (

q{ autolearn=spam } => 'autolearned as spam'

);

%anti_patterns = (
);

tstprefs ('

body	AUTOLEARNTEST_BODY	/EVOLUTION PREVIEW RELEASE/
score	AUTOLEARNTEST_BODY	1.5

body    AUTOLEARNTEST_BODY2     /GET SOURCE CODE/
score   AUTOLEARNTEST_BODY2     1.5

body    AUTOLEARNTEST_BODY3     /RELEASE NOTES/
score   AUTOLEARNTEST_BODY3     1.5

header  AUTOLEARNTEST_HEAD      From =~ /@/
score   AUTOLEARNTEST_HEAD      1.5

header  AUTOLEARNTEST_HEAD2     Subject =~ /HC Announce/
score   AUTOLEARNTEST_HEAD2     1.5

header  AUTOLEARNTEST_HEAD3	Precedence =~ /bulk/
score	AUTOLEARNTEST_HEAD3	1.5

use_bayes 1
bayes_auto_learn 1
bayes_auto_learn_threshold_spam 6.0

');

ok (sarun ("-L -t < data/nice/001", \&patterns_run_cb));
ok_all_patterns();