1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#! /usr/bin/env python
"""sb_dbexpimp.py - Bayes database export/import
Classes:
Abstract:
This utility has the primary function of exporting and importing
a spambayes database into/from a flat file. This is useful in a number
of scenarios.
Platform portability of database - flat files can be exported and
imported across platforms (winduhs and linux, for example)
Database implementation changes - databases can survive database
implementation upgrades or new database implementations. For example,
if a dbm implementation changes between python x.y and python x.y+1...
Database reorganization - an export followed by an import reorgs an
existing database, <theoretically> improving performance, at least in
some database implementations
Database sharing - it is possible to distribute particular databases
for research purposes, database sharing purposes, or for new users to
have a 'seed' database to start with.
Database merging - multiple databases can be merged into one quite
easily by specifying -m on an import. This will add the two database
nham and nspams together (assuming the two databases do not share
corpora) and for wordinfo conflicts, will add spamcount and hamcount
together.
Spambayes software release migration - an export can be executed before
a release upgrade, as part of the installation script. Then, after the
new software is installed, an import can be executed, which will
effectively preserve existing training. This eliminates the need for
retraining every time a release is installed.
Others? I'm sure I haven't thought of everything...
Usage:
sb_dbexpimp [options]
options:
-e : export
-i : import
-v : verbose mode (some additional diagnostic messages)
-f: FN : flat file to export to or import from
-p: FN : name of pickled database file to use
-d: FN : name of dbm database file to use
-m : merge import into an existing database file. This is
meaningful only for import. If omitted, a new database
file will be created. If specified, the imported
wordinfo will be merged into an existing database.
Run dbExpImp -h for more information.
-o: section:option:value :
set [section, option] in the options database to value
-h : help
Examples:
Export pickled mybayes.db into mybayes.db.export as a csv flat file
sb_dbexpimp -e -p mybayes.db -f mybayes.db.export
Import mybayes.db.export into a new DBM mybayes.db
sb_dbexpimp -i -d mybayes.db -f mybayes.db.export
Convert a bayes database from pickle to DBM
sb_dbexpimp -e -p abayes.db -f abayes.export
sb_dbexpimp -i -d abayes.db -f abayes.export
Create a new DBM database (newbayes.db) from two
DBM databases (abayes.db, bbayes.db)
sb_dbexpimp -e -d abayes.db -f abayes.export
sb_dbexpimp -e -d bbayes.db -f bbayes.export
sb_dbexpimp -i -d newbayes.db -f abayes.export
sb_dbexpimp -i -m -d newbayes.db -f bbayes.export
To Do:
o Suggestions?
"""
# This module is part of the spambayes project, which is Copyright 2002
# The Python Software Foundation and is covered by the Python Software
# Foundation license.
__author__ = "Tim Stone <tim@fourstonesExpressions.com>"
from __future__ import generators
# Python 2.2 compatibility stuff
try:
True, False
except NameError:
True, False = 1, 0
try:
import csv
# might get the old object craft csv module - has no reader attr
if not hasattr(csv, "reader"):
raise ImportError
except ImportError:
import spambayes.compatcsv as csv
try:
x = UnicodeDecodeError
except NameError:
UnicodeDecodeError = UnicodeError
else:
del x
import spambayes.storage
from spambayes.Options import options
import sys, os, getopt, errno, re
import urllib
from types import UnicodeType
def uquote(s):
if isinstance(s, UnicodeType):
s = s.encode('utf-8')
return s
# Heaven only knows what encoding non-ASCII stuff will be in
# Try a few common western encodings and punt if they all fail
def uunquote(s):
for encoding in ("utf-8", "cp1252", "iso-8859-1"):
try:
return unicode(s, encoding)
except UnicodeDecodeError:
pass
# punt
return s
def runExport(dbFN, useDBM, outFN):
bayes = spambayes.storage.open_storage(dbFN, useDBM)
if useDBM == "dbm":
words = bayes.db.keys()
words.remove(bayes.statekey)
else:
words = bayes.wordinfo.keys()
try:
fp = open(outFN, 'wb')
except IOError, e:
if e.errno != errno.ENOENT:
raise
writer = csv.writer(fp)
nham = bayes.nham;
nspam = bayes.nspam;
print "Exporting database %s to file %s" % (dbFN, outFN)
print "Database has %s ham, %s spam, and %s words" \
% (nham, nspam, len(words))
writer.writerow([nham, nspam])
for word in words:
wi = bayes._wordinfoget(word)
hamcount = wi.hamcount
spamcount = wi.spamcount
word = uquote(word)
writer.writerow([word, hamcount, spamcount])
def runImport(dbFN, useDBM, newDBM, inFN):
if newDBM:
try:
os.unlink(dbFN)
except OSError:
pass
try:
os.unlink(dbFN+".dat")
except OSError:
pass
try:
os.unlink(dbFN+".dir")
except OSError:
pass
bayes = spambayes.storage.open_storage(dbFN, useDBM)
fp = open(inFN, 'rb')
rdr = csv.reader(fp)
(nham, nspam) = rdr.next()
if newDBM:
bayes.nham = int(nham)
bayes.nspam = int(nspam)
else:
bayes.nham += int(nham)
bayes.nspam += int(nspam)
if newDBM:
impType = "Importing"
else:
impType = "Merging"
print "%s file %s into database %s" % (impType, inFN, dbFN)
for (word, hamcount, spamcount) in rdr:
word = uunquote(word)
# Can't use wordinfo[word] here, because wordinfo
# is only a cache with dbm! Need to use _wordinfoget instead.
wi = bayes._wordinfoget(word)
if wi is None:
wi = bayes.WordInfoClass()
wi.hamcount += int(hamcount)
wi.spamcount += int(spamcount)
bayes._wordinfoset(word, wi)
print "Storing database, please be patient. Even moderately sized"
print "databases may take a very long time to store."
bayes.store()
print "Finished storing database"
if useDBM == "dbm" or useDBM == True:
words = bayes.db.keys()
words.remove(bayes.statekey)
else:
words = bayes.wordinfo.keys()
print "Database has %s ham, %s spam, and %s words" \
% (bayes.nham, bayes.nspam, len(words))
if __name__ == '__main__':
try:
opts, args = getopt.getopt(sys.argv[1:], 'iehmvd:p:f:o:')
except getopt.error, msg:
print >>sys.stderr, str(msg) + '\n\n' + __doc__
sys.exit()
useDBM = "pickle"
newDBM = True
dbFN = None
flatFN = None
exp = False
imp = False
for opt, arg in opts:
if opt == '-h':
print >>sys.stderr, __doc__
sys.exit()
elif opt == '-f':
flatFN = arg
elif opt == '-e':
exp = True
elif opt == '-i':
imp = True
elif opt == '-m':
newDBM = False
elif opt == '-v':
options["globals", "verbose"] = True
elif opt in ('-o', '--option'):
options.set_from_cmdline(arg, sys.stderr)
dbFN, useDBM = spambayes.storage.database_type(opts)
if (dbFN and flatFN):
if exp:
runExport(dbFN, useDBM, flatFN)
if imp:
runImport(dbFN, useDBM, newDBM, flatFN)
else:
print >>sys.stderr, __doc__
|