File: incremental.py

package info (click to toggle)
spambayes 1.0.3-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 2,764 kB
  • ctags: 3,166
  • sloc: python: 29,036; ansic: 195; sh: 110; lisp: 83; makefile: 76
file content (426 lines) | stat: -rwxr-xr-x 13,670 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""incremental.py

This is a test harness for doing testing of incremental
training regimes.  The individual regimes used should
be specified in regime.py.

Options:
  -h  --help         Display this message.
  -r [regime]        Use this regime (default: perfect).
  -s [number]        Run only this set.
"""

###
### This is a test harness for doing testing of incremental
### training regimes.  The individual regimes used should
### be specified in regime.py; see the perfect and
### corrected classes for examples.
###

import getopt
import glob
import os
import sys

sys.path.insert(-1, os.getcwd())
sys.path.insert(-1, os.path.dirname(os.getcwd()))

from spambayes.Options import options
from spambayes import classifier
from spambayes import msgs
import email
from email import Message
import regimes

try:
    True, False
except NameError:
    # Maintain compatibility with Python 2.2
    True, False = 1, 0

class Test:
    # Pass a classifier instance (an instance of Bayes).
    # Loop:
    #     # Train the classifer with new ham and spam.
    #     train(ham, spam) # this implies reset_test_results
    #     Loop:
    #         Optional:
    #             # Possibly fiddle the classifier.
    #             set_classifier()
    #             # Forget smessages the classifier was trained on.
    #             untrain(ham, spam) # this implies reset_test_results
    #         Optional:
    #             reset_test_results()
    #         # Predict against (presumably new) examples.
    #         predict(ham, spam)
    #         Optional:
    #             suck out the results, via instance vrbls and
    #             false_negative_rate(), false_positive_rate(),
    #             false_negatives(), and false_positives()

    def __init__(self, classifier):
        self.set_classifier(classifier)
        self.reset_test_results()

    # Tell the tester which classifier to use.
    def set_classifier(self, classifier):
        self.classifier = classifier

    def reset_test_results(self):
        # The number of ham and spam instances tested.
        self.nham_tested = self.nspam_tested = 0

        # The number of ham and spam instances trained.
        self.nham_trained = self.nspam_trained = 0

        # The number of test instances correctly and incorrectly classified.
        self.nham_right = 0
        self.nham_wrong = 0
        self.nham_unsure = 0;
        self.nspam_right = 0
        self.nspam_wrong = 0
        self.nspam_unsure = 0;

        # Lists of bad predictions.
        self.ham_wrong_examples = []    # False positives:  ham called spam.
        self.spam_wrong_examples = []   # False negatives:  spam called ham.
        self.unsure_examples = []       # ham and spam in middle ground

    # Train the classifier on streams of ham and spam.
    def train(self, hamstream=None, spamstream=None):
        learn = self.classifier.learn
        if hamstream is not None:
            for example in hamstream:
                learn(example, False)
                self.nham_trained += 1
        if spamstream is not None:
            for example in spamstream:
                learn(example, True)
                self.nspam_trained += 1

    # Untrain the classifier on streams of ham and spam.
    def untrain(self, hamstream=None, spamstream=None):
        unlearn = self.classifier.unlearn
        if hamstream is not None:
            for example in hamstream:
                unlearn(example, False)
                self.nham_trained -= 1
        if spamstream is not None:
            for example in spamstream:
                unlearn(example, True)
                self.nspam_trained -= 1

    # Run prediction on each sample in stream.  You're swearing that stream
    # is entirely composed of spam (is_spam True), or of ham (is_spam False).
    # Note that mispredictions are saved, and can be retrieved later via
    # false_negatives (spam mistakenly called ham) and false_positives (ham
    # mistakenly called spam).  For this reason, you may wish to wrap examples
    # in a little class that identifies the example in a useful way, and whose
    # __iter__ produces a token stream for the classifier.
    #
    def predict(self, stream, is_spam):
        guess = self.classifier.spamprob
        for example in stream:
            prob = guess(example)
            is_ham_guessed  = prob <  options["Categorization", "ham_cutoff"]
            is_spam_guessed = prob >= options["Categorization", "spam_cutoff"]
            if is_spam:
                self.nspam_tested += 1
                if is_spam_guessed:
                    self.nspam_right += 1
                elif is_ham_guessed:
                    self.nspam_wrong += 1
                    self.spam_wrong_examples.append(example)
                else:
                    self.nspam_unsure += 1
                    self.unsure_examples.append(example)
            else:
                self.nham_tested += 1
                if is_ham_guessed:
                    self.nham_right += 1
                elif is_spam_guessed:
                    self.nham_wrong += 1
                    self.ham_wrong_examples.append(example)
                else:
                    self.nham_unsure += 1
                    self.unsure_examples.append(example)

        assert (self.nham_right + self.nham_wrong + self.nham_unsure ==
                self.nham_tested)
        assert (self.nspam_right + self.nspam_wrong + self.nspam_unsure ==
                self.nspam_tested)
        num = 0
        if is_ham_guessed:
            num = 1
        if is_spam_guessed:
            num = -1
        return (num, prob)

    def false_positive_rate(self):
        """Percentage of ham mistakenly identified as spam, in 0.0..100.0."""
        return self.nham_wrong * 1e2 / (self.nham_tested or 1)

    def false_negative_rate(self):
        """Percentage of spam mistakenly identified as ham, in 0.0..100.0."""
        return self.nspam_wrong * 1e2 / (self.nspam_tested or 1)

    def unsure_rate(self):
        return ((self.nham_unsure + self.nspam_unsure) * 1e2 /
                ((self.nham_tested + self.nspam_tested) or 1))

    def false_positives(self):
        return self.ham_wrong_examples

    def false_negatives(self):
        return self.spam_wrong_examples

    def unsures(self):
        return self.unsure_examples

class _Example:
    def __init__(self, name, words):
        self.name = name
        self.words = words
    def __iter__(self):
        return iter(self.words)

_easy_test = """
    >>> from spambayes.classifier import Bayes
    >>> from spambayes.Options import options
    >>> options["Categorization", "ham_cutoff"] = options["Categorization", "spam_cutoff"] = 0.5

    >>> good1 = _Example('', ['a', 'b', 'c'])
    >>> good2 = _Example('', ['a', 'b'])
    >>> bad1 = _Example('', ['c', 'd'])

    >>> t = Test(Bayes())
    >>> t.train([good1, good2], [bad1])
    >>> t.predict([_Example('goodham', ['a', 'b']),
    ...            _Example('badham', ['d'])    # FP
    ...           ], False)
    >>> t.predict([_Example('goodspam', ['d']),
    ...            _Example('badspam1', ['a']), # FN
    ...            _Example('badspam2', ['a', 'b']),    # FN
    ...            _Example('badspam3', ['d', 'a', 'b'])    # FN
    ...           ], True)

    >>> t.nham_tested
    2
    >>> t.nham_right, t.nham_wrong
    (1, 1)
    >>> t.false_positive_rate()
    50.0
    >>> [e.name for e in t.false_positives()]
    ['badham']

    >>> t.nspam_tested
    4
    >>> t.nspam_right, t.nspam_wrong
    (1, 3)
    >>> t.false_negative_rate()
    75.0
    >>> [e.name for e in t.false_negatives()]
    ['badspam1', 'badspam2', 'badspam3']

    >>> [e.name for e in t.unsures()]
    []
    >>> t.unsure_rate()
    0.0
"""

__test__ = {'easy': _easy_test}

def _test():
    import doctest, Tester
    doctest.testmod(Tester)


def group_perfect(which, test):
    pass

def guess_perfect(which, test, guess, actual, msg):
    return actual


spam_to_ham = []
ham_to_spam = []
unsure_to_ham = []
unsure_to_spam = []

def group_corrected(which, test):
    global spam_to_ham
    global ham_to_spam
    global unsure_to_ham
    global unsure_to_spam
    test.untrain(ham_to_spam[which], spam_to_ham[which])
    test.train(spam_to_ham[which], ham_to_spam[which])
    test.train(unsure_to_ham[which], unsure_to_spam[which])

def guess_corrected(which, test, guess, actual, msg):
    global spam_to_ham
    global ham_to_spam
    global unsure_to_ham
    global unsure_to_spam
    if guess[0] != actual:
        if actual < 0:
            if guess == 0:
                try:
                    unsure_to_spam[which].append(msg)
                except:
                    unsure_to_spam[which] = [msg]
            else:
                try:
                    ham_to_spam[which].append(msg)
                except:
                    ham_to_spam[which] = [msg]
        else:
            if guess == 0:
                try:
                    unsure_to_ham[which].append(msg)
                except:
                    unsure_to_ham[which] = [msg]
            else:
                try:
                    spam_to_ham[which].append(msg)
                except:
                    spam_to_ham[which] = [msg]
    return guess[0]




def main():
    group_action = None
    guess_action = None

    regime = "perfect"
    which = None

    opts, args = getopt.getopt(sys.argv[1:], 'hs:r:', ['help', 'examples'])
    for opt, arg in opts:
        if opt == '-s':
            which = int(arg) - 1
        elif opt == '-r':
            regime = arg
        elif opt == '-h' or opt == '--help':
            print __doc__
            sys.exit()

    nsets = len(glob.glob("Data/Ham/Set*"))

    files = glob.glob("Data/*/Set*/*")
    files.sort(lambda a,b: cmp(os.path.basename(a), os.path.basename(b)))

    tests = []
    rules = []
    nham_tested = []
    nham_trained = []
    nham_right = []
    nham_wrong = []
    nham_unsure = []
    nspam_tested = []
    nspam_trained = []
    nspam_right = []
    nspam_wrong = []
    nspam_unsure = []
    for j in range(0, nsets):
        # if which is not None and j != which:
        #     continue
        tests.append(Test(classifier.Bayes()))
        exec """rules.append(regimes.%s())""" % (regime) in globals(), locals()
        nham_tested.append([])
        nham_trained.append([])
        nham_right.append([])
        nham_wrong.append([])
        nham_unsure.append([])
        nspam_tested.append([])
        nspam_trained.append([])
        nspam_right.append([])
        nspam_wrong.append([])
        nspam_unsure.append([])

    oldgroup = 0
    for f in files:
        base = os.path.basename(f)
        group = int(base.split('-')[0]);
        dir = os.path.dirname(f)
        set = os.path.basename(dir)
        set = int(set[3:]) - 1
        isspam = (dir.find('Spam') >= 0)

        msg = msgs.Msg(dir, base)

        for j in range(0, nsets):
            if which is not None and j != which:
                continue
            if group != oldgroup:
                sys.stderr.write("%-78s\r" % ("%s  : %d" % (base, set)))
                sys.stderr.flush()

                nham_tested[j].append(tests[j].nham_tested)
                nham_trained[j].append(tests[j].nham_trained)
                nham_right[j].append(tests[j].nham_right)
                nham_wrong[j].append(tests[j].nham_wrong)
                nham_unsure[j].append(tests[j].nham_unsure)
                nspam_tested[j].append(tests[j].nspam_tested)
                nspam_trained[j].append(tests[j].nspam_trained)
                nspam_right[j].append(tests[j].nspam_right)
                nspam_wrong[j].append(tests[j].nspam_wrong)
                nspam_unsure[j].append(tests[j].nspam_unsure)
                # tests[j].reset_test_results()
                rules[j].group_action(j, tests[j])

            if j != set:
                guess = tests[j].predict([msg], isspam)
                if isspam:
                    actual = -1
                else:
                    actual = 1
                todo = rules[j].guess_action(j, tests[j], guess, actual, msg)
                if todo == -1:
                    tests[j].train(None, [msg])
                elif todo == 1:
                    tests[j].train([msg], None)

        oldgroup = group

    sys.stderr.write("\n")
    sys.stderr.flush()

    for j in range(0, nsets):
        if which is not None and j != which:
            continue
        nham_tested[j].append(tests[j].nham_tested)
        nham_trained[j].append(tests[j].nham_trained)
        nham_right[j].append(tests[j].nham_right)
        nham_wrong[j].append(tests[j].nham_wrong)
        nham_unsure[j].append(tests[j].nham_unsure)
        nspam_tested[j].append(tests[j].nspam_tested)
        nspam_trained[j].append(tests[j].nspam_trained)
        nspam_right[j].append(tests[j].nspam_right)
        nspam_wrong[j].append(tests[j].nspam_wrong)
        nspam_unsure[j].append(tests[j].nspam_unsure)

    for j in range(0, nsets):
        if which is not None and j != which:
            continue
        print 'Set %d' % (j + 1)
        for k in range(0, len(nham_tested[j])):
            print '%d %d %d %d %d %d %d %d %d %d' % (
                nham_tested[j][k],
                nham_trained[j][k],
                nham_right[j][k],
                nham_wrong[j][k],
                nham_unsure[j][k],
                nspam_tested[j][k],
                nspam_trained[j][k],
                nspam_right[j][k],
                nspam_wrong[j][k],
                nspam_unsure[j][k]
            )
        print

    print '$ end'

if __name__ == '__main__':
    main()