1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
#! /usr/bin/env python
# A test driver using "the standard" test directory structure.
# This simulates a user that gets E-mail, and only trains on fp,
# fn and unsure messages. It starts by training on the first 30
# messages, and from that point on well classified messages will
# not be used for training. This can be used to see what the performance
# of the scoring algorithm is under such conditions. Questions are:
# * How does the size of the database behave over time?
# * Does the classification get better over time?
# * Are there other combinations of parameters for the classifier
# that make this better behaved than the default values?
"""Usage: %(program)s [options] -n nsets
Where:
-h
Show usage and exit.
-n int
Number of Set directories (Data/Spam/Set1, ... and Data/Ham/Set1, ...).
This is required.
-d decider
Name of the decider. One of %(decisionkeys)s
-m min
Minimal number of messages to train on before involving the decider.
In addition, an attempt is made to merge bayescustomize.ini into the options.
If that exists, it can be used to change the settings in Options.options.
"""
from __future__ import generators
import sys,os
from spambayes.Options import options, get_pathname_option
from spambayes import hammie, msgs, CostCounter
program = sys.argv[0]
debug = 0
def usage(code, msg=''):
"""Print usage message and sys.exit(code)."""
if msg:
print >> sys.stderr, msg
print >> sys.stderr
print >> sys.stderr, __doc__ % globals()
sys.exit(code)
DONT_TRAIN = None
TRAIN_AS_HAM = 1
TRAIN_AS_SPAM = 2
class TrainDecision:
def __call__(self,scr,is_spam):
if is_spam:
return self.spamtrain(scr)
else:
return self.hamtrain(scr)
class UnsureAndFalses(TrainDecision):
def spamtrain(self,scr):
if scr < options["Categorization", "spam_cutoff"]:
return TRAIN_AS_SPAM
def hamtrain(self,scr):
if scr > options["Categorization", "ham_cutoff"]:
return TRAIN_AS_HAM
class UnsureOnly(TrainDecision):
def spamtrain(self,scr):
if options["Categorization", "ham_cutoff"] < scr < \
options["Categorization", "spam_cutoff"]:
return TRAIN_AS_SPAM
def hamtrain(self,scr):
if options["Categorization", "ham_cutoff"] < scr < \
options["Categorization", "spam_cutoff"]:
return TRAIN_AS_HAM
class All(TrainDecision):
def spamtrain(self,scr):
return TRAIN_AS_SPAM
def hamtrain(self,scr):
return TRAIN_AS_HAM
class AllBut0and100(TrainDecision):
def spamtrain(self,scr):
if scr < 0.995:
return TRAIN_AS_SPAM
def hamtrain(self,scr):
if scr > 0.005:
return TRAIN_AS_HAM
class OwnDecision(TrainDecision):
def hamtrain(self,scr):
if scr < options["Categorization", "ham_cutoff"]:
return TRAIN_AS_HAM
elif scr > options["Categorization", "spam_cutoff"]:
return TRAIN_AS_SPAM
spamtrain = hamtrain
class OwnDecisionFNCorrection(OwnDecision):
def spamtrain(self,scr):
return TRAIN_AS_SPAM
decisions={'all': All,
'allbut0and100': AllBut0and100,
'unsureonly': UnsureOnly,
'unsureandfalses': UnsureAndFalses,
'owndecision': OwnDecision,
'owndecision+fn': OwnDecisionFNCorrection,
}
decisionkeys=decisions.keys()
decisionkeys.sort()
class FirstN:
def __init__(self,n,client):
self.client = client
self.x = 0
self.n = n
def __call__(self,scr,is_spam):
self.x += 1
if self.tooearly():
if is_spam:
return TRAIN_AS_SPAM
else:
return TRAIN_AS_HAM
else:
return self.client(scr,is_spam)
def tooearly(self):
return self.x < self.n
class Updater:
def __init__(self,d=None):
self.setd(d)
def setd(self,d):
self.d=d
def drive(nsets,decision):
print options.display()
spamdirs = [get_pathname_option("TestDriver", "spam_directories") % \
i for i in range(1, nsets+1)]
hamdirs = [get_pathname_option("TestDriver", "ham_directories") % \
i for i in range(1, nsets+1)]
spamfns = [(x,y,1) for x in spamdirs for y in os.listdir(x)]
hamfns = [(x,y,0) for x in hamdirs for y in os.listdir(x)]
nham = len(hamfns)
nspam = len(spamfns)
cc = CostCounter.nodelay()
allfns = {}
for fn in spamfns+hamfns:
allfns[fn] = None
d = hammie.open('weaktest.db', False)
hamtrain = 0
spamtrain = 0
n = 0
for dir,name, is_spam in allfns.iterkeys():
n += 1
m=msgs.Msg(dir, name).guts
if debug > 1:
print "trained:%dH+%dS"%(hamtrain,spamtrain)
scr=d.score(m)
if debug > 1:
print "score:%.3f"%scr
if not decision.tooearly():
if is_spam:
if debug > 0:
print "Spam with score %.2f"%scr
cc.spam(scr)
else:
if debug > 0:
print "Ham with score %.2f"%scr
cc.ham(scr)
de = decision(scr,is_spam)
if de == TRAIN_AS_SPAM:
d.train_spam(m)
spamtrain += 1
elif de == TRAIN_AS_HAM:
d.train_ham(m)
hamtrain += 1
if n % 100 == 0:
print "%5d trained:%dH+%dS wrds:%d"%(
n, hamtrain, spamtrain, len(d.bayes.wordinfo))
print cc
print "="*70
print "%5d trained:%dH+%dS wrds:%d"%(
n, hamtrain, spamtrain, len(d.bayes.wordinfo))
print cc
def main():
global debug
import getopt
try:
opts, args = getopt.getopt(sys.argv[1:], 'vd:hn:m:')
except getopt.error, msg:
usage(1, msg)
nsets = None
decision = decisions['unsureonly']
m = 10
for opt, arg in opts:
if opt == '-h':
usage(0)
elif opt == '-n':
nsets = int(arg)
elif opt == '-v':
debug += 1
elif opt == '-m':
m = int(arg)
elif opt == '-d':
if not decisions.has_key(arg):
usage(1,'Unknown decisionmaker')
decision = decisions[arg]
if args:
usage(1, "Positional arguments not supported")
if nsets is None:
usage(1, "-n is required")
drive(nsets,decision=FirstN(m,decision()))
if __name__ == "__main__":
main()
|